Acoustoelectric drag current in vanadium oxide films

2020 ◽  
Vol 128 (15) ◽  
pp. 155104
Author(s):  
Pavel N. Lapa ◽  
George Kassabian ◽  
Felipe Torres ◽  
Pavel Salev ◽  
Min-Han Lee ◽  
...  
2006 ◽  
Author(s):  
S. Paradis ◽  
P. Mérel ◽  
P. Laou ◽  
D. Alain

2014 ◽  
Vol 564 ◽  
pp. 179-185 ◽  
Author(s):  
Yu. Goltvyanskyi ◽  
I. Khatsevych ◽  
A. Kuchuk ◽  
V. Kladko ◽  
V. Melnik ◽  
...  

2013 ◽  
Vol 537 ◽  
pp. 174-178
Author(s):  
Ji Chao Wang ◽  
Guang Ming Wu ◽  
Guo Hua Gao ◽  
Xiao Wei Zhou

Vanadium oxide films were prepared via the sol–gel process and dip coating method, using V2O5as raw materials and H2O2(volume fraction 30) as the solvent. Mn and Ni ions were added to vanadium oxide sol to prepare doping vanadium oxide films. The films were characterized by atomic force microscopy, FT-IR, X-ray diffraction and electrochemical techniques. The add-on of Metal ions will not affect the morphology of the vanadium oxide films, but change the valence of vanadium ion and vanadium oxide crystal phase. Furthermore, cyclic voltammetry curves show that metal ions doping vanadium oxide films exhibit reversible electrochemical reaction. But electrochemical impedance spectroscopy indicates pure vanadium oxide film has a better diffusion rate.


2020 ◽  
Vol 854 ◽  
pp. 103-108
Author(s):  
A.L. Pergament ◽  
O.Ya. Berezina ◽  
S.V. Burdyukh ◽  
V.P. Zlomanov ◽  
Evgeniy A. Tutov

Vanadium oxide films have been fabricated by the acetylacetonate and triethoxy vanadyl sol-gel methods on silicon substrates, as well as by magnetron sputtering on glass-ceramic substrates. Additional annealing in reducing atmosphere results in formation of vanadium dioxide or mixed phases with a VO2 predominance. The obtained films demonstrate the metal-insulator transition and electrical switching. In the films produced from triethoxy vanadyl, the peculiarities of electrical properties are related to the size effect, heterophase character of vanadium oxide films, and different types of charge carriers in the bulk of nanocrystallites and on their surfaces. Also, the effect of doping with hydrogen by means of plasma-immersion ion implantation on the properties of vanadium dioxide is explored. It is shown that the transition parameters in VO2 thin films depend on the hydrogen implantation dose. At doses exceeding a certain threshold value, the films are metallized, and the phase transition no longer occurs.


Sign in / Sign up

Export Citation Format

Share Document