Structural, morphological and optical properties of P3HT/MAPbI2Cl/ZnO:GO thin films for perovskite solar cells

2020 ◽  
Author(s):  
Pooja Sharda ◽  
Kanhaiya Chawla ◽  
Deepak Kumar Yadav ◽  
Chhagan Lal
Nanoscale ◽  
2019 ◽  
Vol 11 (45) ◽  
pp. 21824-21833 ◽  
Author(s):  
Jyoti V. Patil ◽  
Sawanta S. Mali ◽  
Chang Kook Hong

Controlling the grain size of the organic–inorganic perovskite thin films using thiourea additives now crossing 2 μm size with >20% power conversion efficiency.


2021 ◽  
Vol 11 (4) ◽  
pp. 1657
Author(s):  
Petros-Panagis Filippatos ◽  
Nikolaos Kelaidis ◽  
Maria Vasilopoulou ◽  
Dimitris Davazoglou ◽  
Alexander Chroneos

Titania (TiO2) is a key material used as an electron transport in dye-sensitized and halide perovskite solar cells due to its intrinsic n-type conductivity, visible transparency, low-toxicity, and abundance. Moreover, it exhibits pronounced photocatalytic properties in the ultra-violet part of the solar spectrum. However, its wide bandgap (around 3.2 eV) reduces its photocatalytic activity in the visible wavelengths’ region and electron transport ability. One of the most efficient strategies to simultaneously decrease its bandgap value and increase its n-type conductivity is doping with appropriate elements. Here, we have investigated using the density functional theory (DFT), as well as the influence of chromium (Cr), molybdenum (Mo), and tungsten (W) doping on the structural, electronic, and optical properties of TiO2. We find that doping with group 6 elements positively impacts the above-mentioned properties and should be considered an appropriate method for photocatalystic applications. In addition to the pronounced reduction in the bandgap values, we also predict the formation of energy states inside the forbidden gap, in all the cases. These states are highly desirable for photocatalytic applications as they induce low energy transitions, thus increasing the oxide’s absorption within the visible. Still, they can be detrimental to solar cells’ performance, as they constitute trap sites for photogenerated charge carriers.


2019 ◽  
Vol 10 (2) ◽  
pp. 485-497 ◽  
Author(s):  
Muhammad Jawad ◽  
Abdul Faheem Khan ◽  
Amir Waseem ◽  
Afzal Hussain Kamboh ◽  
Muhammad Mohsin ◽  
...  

2019 ◽  
Vol 9 (25) ◽  
pp. 1900896 ◽  
Author(s):  
Hongrui Sun ◽  
Jing Zhang ◽  
Xinlei Gan ◽  
Luting Yu ◽  
Haobo Yuan ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Chuan Lung Chuang ◽  
Ming Wei Chang ◽  
Nien Po Chen ◽  
Chung Chiang Pan ◽  
Chung Ping Liu

Indium tin oxide (ITO) thin films were grown on glass substrates by direct current (DC) reactive magnetron sputtering at room temperature. Annealing at the optimal temperature can considerably improve the composition, structure, optical properties, and electrical properties of the ITO film. An ITO sample with a favorable crystalline structure was obtained by annealing in fixed oxygen/argon ratio of 0.03 at 400°C for 30 min. The carrier concentration, mobility, resistivity, band gap, transmission in the visible-light region, and transmission in the near-IR regions of the ITO sample were-1.6E+20 cm−3,2.7E+01 cm2/Vs,1.4E-03 Ohm-cm, 3.2 eV, 89.1%, and 94.7%, respectively. Thus, annealing improved the average transmissions (400–1200 nm) of the ITO film by 16.36%. Moreover, annealing a copper-indium-gallium-diselenide (CIGS) solar cell at 400°C for 30 min in air improved its efficiency by 18.75%. The characteristics of annealing ITO films importantly affect the structural, morphological, electrical, and optical properties of ITO films that are used in solar cells.


2017 ◽  
Vol 5 (42) ◽  
pp. 22325-22333 ◽  
Author(s):  
Isabella Poli ◽  
Salvador Eslava ◽  
Petra Cameron

Tetra-butylammonium cations have been partially substituted for methylammonium cations in perovskite thin films. The stability of devices stored under ambient conditions was enhanced by the presence of TBA and cells with high mol% TBA were found to have reasonable efficiencies while being semi-transparent.


2021 ◽  
Vol 136 ◽  
pp. 106151
Author(s):  
Nutcha Khambunkoed ◽  
Saowalak Homnan ◽  
Atcharawon Gardchareon ◽  
Narupon Chattrapiban ◽  
Prayoon Songsiriritthigul ◽  
...  

Author(s):  
Hung-Cheng Chen ◽  
Jie-Min Lan ◽  
Hsiang-Lin Hsu ◽  
Chia-Wei Li ◽  
Tien-Shou Shieh ◽  
...  

Three different benzylammonium halide (Cl, Br, and I) salts were investigated to elucidate their effects as additives on MAPbI3 perovskite surface morphology, crystal structure, optical properties, and solar cell performance and stability.


Sign in / Sign up

Export Citation Format

Share Document