Comparative analysis of the magnetoelectric drive with linear drives of low-speed single-stage piston units

2020 ◽  
Author(s):  
A. A. Tatevosyan ◽  
S. S. Busarov ◽  
R. E. Kobyl'skiy ◽  
T. A. Zamiralova
Author(s):  
Matthias Rolfes ◽  
Martin Lange ◽  
Konrad Vogeler ◽  
Ronald Mailach

The demand of increasing pressure ratios for modern high pressure compressors leads to decreasing blade heights in the last stages. As tip clearances cannot be reduced to any amount and minimum values might be necessary for safety reasons, the tip clearance ratios of the last stages can reach values notably higher than current norms. This can be intensified by a compressor running in transient operations where thermal differences can lead to further growing clearances. For decades, the detrimental effects of large clearances on an axial compressor’s operating range and efficiency are known and investigated. The ability of circumferential casing grooves in the rotor casing to improve the compressor’s operating range has also been in the focus of research for many years. Their simplicity and ease of installation are one reason for their continuing popularity nowadays, where advanced methods to increase the operating range of an axial compressor are known. In a previous paper [1], three different circumferential groove casing treatments were investigated in a single stage environment in the Low Speed Axial Research Compressor at TU Dresden. One of these grooves was able to notably improve the operating range and the efficiency of the single stage compressor at very large rotor tip clearances (5% of chord length). In this paper, the results of tests with this particular groove type in a three stage environment in the Low Speed Axial Research Compressor are presented. Two different rotor tip clearance sizes of 1.2% and 5% of tip chord length were investigated. At the small tip clearance, the grooves are almost neutral. Only small reductions in total pressure ratio and efficiency compared to the solid wall can be observed. If the compressor runs with large tip clearances it notably benefits from the casing grooves. Both, total pressure and efficiency can be improved by the grooves in a similar extent as in single stage tests. Five-hole probe measurements and unsteady wall pressure measurements show the influence of the groove on the flow field. With the help of numerical investigations the different behavior of the grooves at the two tip clearance sizes will be discussed.


Author(s):  
Mini R ◽  
Shabana Backer P. ◽  
B. Hariram Satheesh ◽  
Dinesh M. N

<p>This paper presents a closed loop Model Reference Adaptive system (MRAS) observer with artificial intelligent Nuero fuzzy controller (NFC) as the adaptation technique to mitigate the low speed estimation issues and to improvise the performance of the Sensorless Direct Torque Controlled (DTC) Induction Motor Drives (IMD). Rotor flux MRAS and reactive power MRAS with NFC is explored and detailed analysis is carried out for low speed estimation. Comparative analysis between rotor flux MRAS and reactive power MRAS with PI as well as NFC as adaptive controller is performed and results are presented in this paper. The comparative analysis among these four speed estimation methods shows that reactive power MRAS with NFC as adaptation mechanism shows reduced speed estimation error and actual speed error at steady state operating conditions when the drive is subjected to low speed operation. Simulation carried out using MATLAB-Simulink software to validate the performance of the drive especially at low speeds with rated and variable load conditions.</p>


Author(s):  
Horst Saathoff ◽  
Udo Stark

The paper describes an investigation of the overtip end-wall flow in a single–stage axial–flow low–speed compressor utilizing an oil flow technique and a periodic multisampling pressure measurement technique. Representative oil flow pictures and ensemble averaged casingwall pressure distributions with standard deviations — supplemented by selected endwall oil flow pictures from a corresponding 2D compressor cascade — are shown and carefully analysed. The results enable the key features of the overtip endwall flow to be identified and changes with flow rate — or inlet angle — to be determined.


1990 ◽  
Author(s):  
Y. S. Li ◽  
N. A. Cumpsty

The mechanism of mixing in axial flow compressors has been investigated in two low speed machines. For reasons of length this is described in two parts. Results in a 4-stage compressor are described here in Part I and show that the mixing coefficients across the first and the third stators are of similar magnitude. Part I also describes the background and experimental facilities and techniques used in both parts together with the nomenclature and all the references. Part II describes the results from a large single stage compressor. It also presents measurements of mixing in a simple two-dimensional duct, and presents conclusions for the whole investigation.


1991 ◽  
Vol 113 (2) ◽  
pp. 161-165 ◽  
Author(s):  
Y. S. Li ◽  
N. A. Cumpsty

The mechanism of mixing in axial flow compressors has been investigated in two low-speed machines. For reasons of length this is described in two parts. Results in a four-stage compressor are described here in Part I and show that the mixing coefficients across the first and the third stators are of similar magnitude. Part I also describes the background and experimental facilities and techniques used in both parts together with the nomenclature and all the references. Part II describes the results from a large single-stage compressor. It also presents measurements of mixing in a simple two-dimensional duct, and presents conclusions for the whole investigation.


Sign in / Sign up

Export Citation Format

Share Document