scholarly journals Role of Atwood number on flow morphology of a planar shock-accelerated square bubble: A numerical study

2020 ◽  
Vol 32 (12) ◽  
pp. 126112
Author(s):  
Satyvir Singh
2020 ◽  
Vol 74 ◽  
pp. 103112 ◽  
Author(s):  
Gang Wang ◽  
Gillian Pickup ◽  
Kenneth Sorbie ◽  
Eric Mackay ◽  
Arne Skauge

2014 ◽  
Author(s):  
Andrey I. Dmitriev ◽  
Heinz Kloß ◽  
Werner Österle
Keyword(s):  

2006 ◽  
Vol 128 (4) ◽  
pp. 656-662 ◽  
Author(s):  
Seok-Ki Choi ◽  
Seong-O Kim

A numerical study of the evaluation of turbulence models for predicting the thermal stratification phenomenon is presented. The tested models are the elliptic blending turbulence model (EBM), the two-layer model, the shear stress transport model (SST), and the elliptic relaxation model (V2-f). These four turbulence models are applied to the prediction of a thermal stratification in an upper plenum of a liquid metal reactor experimented at the Japan Nuclear Cooperation (JNC). The EBM and V2-f models predict properly the steep gradient of the temperature at the interface of the cold and hot regions that is observed in the experimental data, and the EBM and V2-f models have the capability of predicting the temporal oscillation of the temperature. The two-layer and SST models predict the diffusive temperature gradient at the interface of a thermal stratification and fail to predict a temporal oscillation of the temperature. In general, the EBM predicts best the thermal stratification phenomenon in the upper plenum of the liquid metal reactor.


2014 ◽  
Vol 57 (5) ◽  
Author(s):  
Nazario Tartaglione ◽  
Rodrigo Caballero

<p>This article investigates the role of sea surface temperature (SST) as well as the effects of evaporation and moisture convergence on the evolution of cyclone Klaus, which occurred on January 23 and 24, 2009. To elucidate the role of sea surface temperature (SST) and air–sea fluxes in the dynamics of the cyclone, ten hydrostatic mesoscale simulations were performed by Bologna Limited Area Model (BOLAM). The first one was a control experiment with European Centre for Medium-Range Weather Forecasts (ECMWF) SST analysis. The nine following simulations are sensitivity experiments where the SST are obtained by adding a constant value by 1 to 9 K to the ECMWF field. Results show that a warmer sea increases the surface latent heat fluxes and the moisture convergence, favoring the development of convection in the storm. Convection is affected immediately by the increased SST. Later on, drop of mean sea level pressure (MSLP) occurs together with increasing of surface winds. The cyclone trajectory is not sensitive to change in SST differently from MSLP and convective precipitation.</p>


Sign in / Sign up

Export Citation Format

Share Document