scholarly journals A numerical study of the windstorm Klaus: sensitivity to sea surface temperature

2014 ◽  
Vol 57 (5) ◽  
Author(s):  
Nazario Tartaglione ◽  
Rodrigo Caballero

<p>This article investigates the role of sea surface temperature (SST) as well as the effects of evaporation and moisture convergence on the evolution of cyclone Klaus, which occurred on January 23 and 24, 2009. To elucidate the role of sea surface temperature (SST) and air–sea fluxes in the dynamics of the cyclone, ten hydrostatic mesoscale simulations were performed by Bologna Limited Area Model (BOLAM). The first one was a control experiment with European Centre for Medium-Range Weather Forecasts (ECMWF) SST analysis. The nine following simulations are sensitivity experiments where the SST are obtained by adding a constant value by 1 to 9 K to the ECMWF field. Results show that a warmer sea increases the surface latent heat fluxes and the moisture convergence, favoring the development of convection in the storm. Convection is affected immediately by the increased SST. Later on, drop of mean sea level pressure (MSLP) occurs together with increasing of surface winds. The cyclone trajectory is not sensitive to change in SST differently from MSLP and convective precipitation.</p>

2011 ◽  
Vol 11 (12) ◽  
pp. 6049-6062 ◽  
Author(s):  
X. Yue ◽  
H. Liao ◽  
H. J. Wang ◽  
S. L. Li ◽  
J. P. Tang

Abstract. Mineral dust aerosol can be transported over the nearby oceans and influence the energy balance at the sea surface. The role of dust-induced sea surface temperature (SST) responses in simulations of the climatic effect of dust is examined by using a general circulation model with online simulation of mineral dust and a coupled mixed-layer ocean model. Both the longwave and shortwave radiative effects of mineral dust aerosol are considered in climate simulations. The SST responses are found to be very influential on simulated dust-induced climate change, especially when climate simulations consider the two-way dust-climate coupling to account for the feedbacks. With prescribed SSTs and dust concentrations, we obtain an increase of 0.02 K in the global and annual mean surface air temperature (SAT) in response to dust radiative effects. In contrast, when SSTs are allowed to respond to radiative forcing of dust in the presence of the dust cycle-climate interactions, we obtain a global and annual mean cooling of 0.09 K in SAT by dust. The extra cooling simulated with the SST responses can be attributed to the following two factors: (1) The negative net (shortwave plus longwave) radiative forcing of dust at the surface reduces SST, which decreases latent heat fluxes and upward transport of water vapor, resulting in less warming in the atmosphere; (2) The positive feedback between SST responses and dust cycle. The dust-induced reductions in SST lead to reductions in precipitation (or wet deposition of dust) and hence increase the global burden of small dust particles. These small particles have strong scattering effects, which enhance the dust cooling at the surface and further reduce SSTs.


2020 ◽  
Vol 12 (5) ◽  
pp. 825 ◽  
Author(s):  
Christos Stathopoulos ◽  
Platon Patlakas ◽  
Christos Tsalis ◽  
George Kallos

Air–sea interface processes are highly associated with the evolution and intensity of marine-developed storms. Specifically, in the Mediterranean Sea, the air–ocean temperature deviations have a profound role during the several stages of Mediterranean cyclonic events. Subsequently, this enhances the need for better knowledge and representation of the sea surface temperature (SST). In this work, an analysis of the impact and uncertainty of the SST from different well-known datasets on the life-cycle of Mediterranean cyclones is attempted. Daily SST from the Real Time Global SST (RTG_SST) and hourly SST fields from the Operational SST and Sea Ice Ocean Analysis (OSTIA) and the NEMO ocean circulation model are implemented in the RAMS/ICLAMS-WAM coupled modeling system. For the needs of the study, the Mediterranean cyclones Trixi, Numa, and Zorbas were selected. Numerical experiments covered all stages of their life-cycles (five to seven days). Model results have been analyzed in terms of storm tracks and intensities, cyclonic structural characteristics, and derived heat fluxes. Remote sensing data from the Integrated Multi-satellitE Retrievals (IMERG) for Global Precipitation Measurements (GPM), Blended Sea Winds, and JASON altimetry missions were employed for a qualitative and quantitative comparison of modeled results in precipitation, maximum surface wind speed, and wave height. Spatiotemporal deviations in the SST forcing rather than significant differences in the maximum/minimum SST values, seem to mainly contribute to the differences between the model results. Considerable deviations emerged in the resulting heat fluxes, while the most important differences were found in precipitation exhibiting spatial and intensity variations reaching 100 mm. The employment of widely used products is shown to result in different outcomes and this point should be taken into consideration in forecasting and early warning systems.


Nature ◽  
1996 ◽  
Vol 383 (6596) ◽  
pp. 152-155 ◽  
Author(s):  
Henry F. Diaz ◽  
Nicholas E. Graham

Sign in / Sign up

Export Citation Format

Share Document