Optimizations of small horizontal-axis wind turbine rotors at low Reynolds number

2020 ◽  
Author(s):  
Manoj Kumar Chaudhary ◽  
S. Prakash
Author(s):  
Manoj Kumar Chaudhary ◽  
◽  
S. Prakash ◽  

In this study, small horizontal-axis wind turbine blades operating at low wind speeds were optimized. An optimized blade design method based on blade element momentum (BEM) theory was used. The rotor radius of 0.2 m, 0.4 m and 0.6 m and blade geometry with single (W1 & W2) and multistage rotor (W3) was examined. MATLAB and XFoil programs were used to implement to BEM theory and devise a six novel airfoil (NAF-Series) suitable for application of small horizontal axis wind turbines at low Reynolds number. The experimental blades were developed using the 3D printing additive manufacturing technique. The new airfoils such as NAF3929, NAF4420, NAF4423, NAF4923, NAF4924, and NAF5024 were investigated using XFoil software at Reynolds numbers of 100,000. The investigation range included tip speed ratios from 3 to 10 and angle of attacks from 2° to 20°. These parameters were varied in MATLAB and XFoil software for optimization and investigation of the power coefficient, lift coefficient, drag coefficient and lift-to-drag ratio. The cut-in wind velocity of the single and multistage rotors was approximately 2.5 & 3 m/s respectively. The optimized tip speed ratio, axial displacement and angle of attack were 5.5, 0.08m & 6° respectively. The proposed NAF-Series airfoil blades exhibited higher aerodynamic performances and maximum output power than those with the base SG6043 and NACA4415 airfoil at low Reynolds number.


This research paper presents a design and fabrication of 100 Watt small horizontal axis wind turbine with 0.24 m and 0.35 m rotor radius and tip speed ratio varies from 2 to 10 was designed and development for operated at low wind speed with Low Reynolds number. In this paper, a new airfoil profile was designed and developed, it’s denoted by MK115. The numerical and experimental analysis for 6 airfoils using Xfoil software was conducted with a view to evaluating the lift-to-drag ratio and angle of attack by means of the SD7024, SG6043, NACA2412, S1210, E213, and New Airfoil (MK115) tested. In simulation, new MK115 airfoil was the most convenient airfoil to start high energy production for low-wind applications, on the Reynolds number 25000, 50000, 75000, and 100000 in improved airfoil (MK115) tests an Open type wind tunnel. An Xfoil analysis to obtain further data on the flow characteristics was also conducted. (MK115) airfoil have CLmax of 0.92, 1.25, 1.69, 1.67 at Re=25k, 50k, 75k and 100k for an angle of attack is equal to 100 .A maximum lift to drag ratio (Cl/Cd) of 7,16,50,63 at Re=25k, 50k, 75k and 100k for New airfoil (MK115) at angle of attack (α) =40 , 40 , 80 , 80 . SG6043, NACA2412, E214, SD7034, S1210 and MK115 (New airfoil) have the Maximum Cp=0.37, 0.36, 0.4, 0.39, 0.44, and 0.44 at tip speed ratio (λ) =6 for Reynolds number is equal to 100000. MK115, Maximum Torque obtained 0.9744 Nm, 1.389 Nm and 2.4866 Nm at blade angle =0, 15 and 30 degrees respectively. Power coefficient (Cp) =0.51, 0.5, 0.46, and 0.4 at Rotor shaft angle=00 , 50 , 100 , and 150 respectively for the new airfoil results.


Author(s):  
A. Villegas Vaquero ◽  
Y. Cheng ◽  
V. del Campo ◽  
F. J. Di´ez

In this study, low Reynolds number wind turbine aerodynamics was considered. The overall goal was to characterize the flow in order to optimize the power output of the system. First, BEMT theory (Blade Element Momentum Theory) was formulated for this flow where Prandtl’s tip- and hub-loss corrections were included, as well as Glauert’s thrust coefficient correction. The theory was validated with experimental data from National Renewable Energy Laboratory (NREL) for larger scale wind turbines. Also, a physical model of a low Reynolds number horizontal-axis wind turbine (HAWT) was built. Particle Image Velocimetry (PIV) was used to calculate the velocity field around the HAWT. This allowed for planar measurements of the velocity field at different location in the wake of the rotor. The measurements were performed in a water channel allowing for better control of PIV seeding and improved flow visualization. PIV results allowed observation of the velocity field and vorticity field in the wake of the rotor. This data is currently being compared to BEMT theory suggesting good agreement.


2005 ◽  
Author(s):  
Sarim N. Al-Zubaidy ◽  
Alwyn Johnson ◽  
Jacqueline Bridge

In the past twenty years wind energy remerged on the world scene with a very healthy growth rate, it has outstripped photovoltaics as the world’s fastest growing energy source, with a growth rate in excess of 30 percent per annum. The proposed paper presents a numerical procedure for the analysis and design of Horizontal Axis Wind Turbine rotors for fabrication in countries with limited manufacturing base and limited design expertise. To ascertain the accuracy and to determine where further improvements could be initiated; numerical findings were then compared with published experimental test data, the compression showed an average deviation of less than 3%. Once the approach was validated and standardized an airfoil design was produced. A computational fluid dynamic code coupled with a simple numerical algorithm aided the inverse design procedure. The final design is well proportioned and theoretically able to meet the stated objective and satisfied the constraints. The generated geometrical data is in a form suitable for manufacture using local manufacturing capabilities, the primary objective of this work.


2005 ◽  
Vol 2005.2 (0) ◽  
pp. 245-246
Author(s):  
Shinya HOTTA ◽  
Yutaka HASEGAWA ◽  
Hiroshi IMAMURA ◽  
Junsuke MURATA ◽  
Koji KIKUYAMA

Sign in / Sign up

Export Citation Format

Share Document