Spin-orbit torque and Dzyaloshinskii–Moriya interaction in 4d metal Rh-based magnetic heterostructures

2021 ◽  
Vol 118 (11) ◽  
pp. 112402
Author(s):  
Cuimei Cao ◽  
Shiwei Chen ◽  
Wenjie Song ◽  
Xiaoyan Zhu ◽  
Shuai Hu ◽  
...  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Woo Seung Ham ◽  
Abdul-Muizz Pradipto ◽  
Kay Yakushiji ◽  
Kwangsu Kim ◽  
Sonny H. Rhim ◽  
...  

AbstractDzyaloshinskii–Moriya interaction (DMI) is considered as one of the most important energies for specific chiral textures such as magnetic skyrmions. The keys of generating DMI are the absence of structural inversion symmetry and exchange energy with spin–orbit coupling. Therefore, a vast majority of research activities about DMI are mainly limited to heavy metal/ferromagnet bilayer systems, only focusing on their interfaces. Here, we report an asymmetric band formation in a superlattices (SL) which arises from inversion symmetry breaking in stacking order of atomic layers, implying the role of bulk-like contribution. Such bulk DMI is more than 300% larger than simple sum of interfacial contribution. Moreover, the asymmetric band is largely affected by strong spin–orbit coupling, showing crucial role of a heavy metal even in the non-interfacial origin of DMI. Our work provides more degrees of freedom to design chiral magnets for spintronics applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ruyi Chen ◽  
Qirui Cui ◽  
Liyang Liao ◽  
Yingmei Zhu ◽  
Ruiqi Zhang ◽  
...  

AbstractPerpendicularly magnetized synthetic antiferromagnets (SAF), possessing low net magnetization and high thermal stability as well as easy reading and writing characteristics, have been intensively explored to replace the ferromagnetic free layers of magnetic tunnel junctions as the kernel of spintronic devices. So far, utilizing spin-orbit torque (SOT) to realize deterministic switching of perpendicular SAF have been reported while a large external magnetic field is typically needed to break the symmetry, making it impractical for applications. Here, combining theoretic analysis and experimental results, we report that the effective modulation of Dzyaloshinskii-Moriya interaction by the interfacial crystallinity between ferromagnets and adjacent heavy metals plays an important role in domain wall configurations. By adjusting the domain wall configuration between Bloch type and Néel type, we successfully demonstrate the field-free SOT-induced magnetization switching in [Co/Pd]/Ru/[Co/Pd] SAF devices constructed with a simple wedged structure. Our work provides a practical route for utilization of perpendicularly SAF in SOT devices and paves the way for magnetic memory devices with high density, low stray field, and low power consumption.


2020 ◽  
Author(s):  
Woo-Seung Ham ◽  
Abdul-Muizz Pradipto ◽  
Kay Yakushiji ◽  
Kwangsu Kim ◽  
Sonny Rhim ◽  
...  

Abstract Dzyaloshinskii-Moriya interaction (DMI) is considered as one of the most important energy for specific chiral texture such as magnetic skyrmions. The key of generating DMI is absence of structural inversion symmetry and exchange energy with spin-orbit coupling. Therefore, a vast majority of researches about DMI is mainly limited to heavy metal/ferromagnet bilayer systems, only focusing on their interfaces. Here, we report that asymmetric band formation in an artificial superlattice arises from inversion symmetry breaking in stacking order of atomic layers, resulting in bulk DMI. Such bulk DMI is more than 300% larger than simple sum of interfacial contribution. Moreover, the asymmetric band is largely affected by strong spin-orbit coupling, showing crucial role of a heavy metal even in the non-interfacial origin of DMI. Such Rashba superlattices can be a new class of material design for spintronics applications.


2018 ◽  
Vol 113 (2) ◽  
pp. 022402 ◽  
Author(s):  
Lisen Huang ◽  
Shikun He ◽  
Qi Jia Yap ◽  
Sze Ter Lim

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
R. Cardias ◽  
A. Szilva ◽  
M. M. Bezerra-Neto ◽  
M. S. Ribeiro ◽  
A. Bergman ◽  
...  

AbstractWe have derived an expression of the Dzyaloshinskii–Moriya interaction (DMI), where all the three components of the DMI vector can be calculated independently, for a general, non-collinear magnetic configuration. The formalism is implemented in a real space—linear muffin-tin orbital—atomic sphere approximation (RS-LMTO-ASA) method. We have chosen the Cr triangular trimer on Au(111) and Mn triangular trimers on Ag(111) and Au(111) surfaces as numerical examples. The results show that the DMI (module and direction) is drastically different between collinear and non-collinear states. Based on the relation between the spin and charge currents flowing in the system and their coupling to the non-collinear magnetic configuration of the triangular trimer, we demonstrate that the DMI interaction can be significant, even in the absence of spin-orbit coupling. This is shown to emanate from the non-collinear magnetic structure, that can induce significant spin and charge currents even with spin-orbit coupling is ignored.


2019 ◽  
Vol 29 (16) ◽  
pp. 1805822 ◽  
Author(s):  
Lijun Zhu ◽  
Kemal Sobotkiewich ◽  
Xin Ma ◽  
Xiaoqin Li ◽  
Daniel C. Ralph ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document