large spin
Recently Published Documents


TOTAL DOCUMENTS

376
(FIVE YEARS 79)

H-INDEX

49
(FIVE YEARS 5)

2021 ◽  
Vol 9 ◽  
Author(s):  
A. Yakushev ◽  
L. Lens ◽  
Ch. E. Düllmann ◽  
M. Block ◽  
H. Brand ◽  
...  

Nihonium (Nh, element 113) and flerovium (Fl, element 114) are the first superheavy elements in which the 7p shell is occupied. High volatility and inertness were predicted for Fl due to the strong relativistic stabilization of the closed 7p1/2 sub-shell, which originates from a large spin-orbit splitting between the 7p1/2 and 7p3/2 orbitals. One unpaired electron in the outermost 7p1/2 sub-shell in Nh is expected to give rise to a higher chemical reactivity. Theoretical predictions of Nh reactivity are discussed, along with results of the first experimental attempts to study Nh chemistry in the gas phase. The experimental observations verify a higher chemical reactivity of Nh atoms compared to its neighbor Fl and call for the development of advanced setups. First tests of a newly developed detection device miniCOMPACT with highly reactive Fr isotopes assure that effective chemical studies of Nh are within reach.


2021 ◽  
Vol 7 (12) ◽  
pp. 156
Author(s):  
Satoshi Sumi ◽  
Yuichiro Hirano ◽  
Hiroyuki Awano ◽  
Junji Tominaga

A [GeTe/Sb2Te3] superlattice is known as a topological insulator. It shows magnetic responses such as magneto-optical effect, magneto resistance, magneto capacitance, and so on. We have reported that [GeTe/Sb2Te3] superlattice film has a large spin–orbit interaction using a spin pumping method of a [GeTe/Sb2Te3]/Py superlattice. In this paper, we demonstrate a ST-FMR (spin transfer torque ferromagnetic resonance) of the [GeTe/Sb2Te3]6/Py superlattice, compared with a W/Py bilayer. The superlattice film showed a large resonance signal with a symmetric component. The ratio of symmetric components (S) to anti-symmetric (A) components (S/A) was 1.4, which suggests that the superlattice exhibits a large spin Hall angle. The [GeTe/Sb2Te3] superlattice will be suitable as a hetero-interface material required for high performance spintronics devices in future.


2021 ◽  
Author(s):  
Yu Pan ◽  
Congcong Le ◽  
Bin He ◽  
Sarah J. Watzman ◽  
Mengyu Yao ◽  
...  

AbstractA large anomalous Nernst effect (ANE) is crucial for thermoelectric energy conversion applications because the associated unique transverse geometry facilitates module fabrication. Topological ferromagnets with large Berry curvatures show large ANEs; however, they face drawbacks such as strong magnetic disturbances and low mobility due to high magnetization. Herein, we demonstrate that YbMnBi2, a canted antiferromagnet, has a large ANE conductivity of ~10 A m−1 K−1 that surpasses large values observed in other ferromagnets (3–5 A m−1 K−1). The canted spin structure of Mn guarantees a non-zero Berry curvature, but generates only a weak magnetization three orders of magnitude lower than that of general ferromagnets. The heavy Bi with a large spin–orbit coupling enables a large ANE and low thermal conductivity, whereas its highly dispersive px/y orbitals ensure low resistivity. The high anomalous transverse thermoelectric performance and extremely small magnetization make YbMnBi2 an excellent candidate for transverse thermoelectrics.


2021 ◽  
Vol 104 (18) ◽  
Author(s):  
Van Tuong Pham ◽  
Haozhe Yang ◽  
Won Young Choi ◽  
Alain Marty ◽  
Inge Groen ◽  
...  

Author(s):  
Taisei Ariki ◽  
Tatsuya Nomura ◽  
Kohei Ohnishi ◽  
Takashi Kimura

Abstract A lateral spin valve consisting of highly spin-polarized CoFeAl electrodes with a CoFeAl/Cu bilayer spin channel has been developed. Despite a large spin absorption into the CoFeAl capping channel layer, an efficient spin injection and detection using the CoFeAl electrodes enable us to observe a clear spin valve signal. We demonstrate that the nonlocal spin accumulation signal is significantly modulated depending on the relative angle of the magnetizations between the spin injector and absorber. The observed modulation phenomena is explained by the longitudinal and transverse spin absorption effects into the CoFeAl channel layer with the spin resistance model.


2021 ◽  
pp. 2109361
Author(s):  
Emanuele Longo ◽  
Matteo Belli ◽  
Mario Alia ◽  
Martino Rimoldi ◽  
Raimondo Cecchini ◽  
...  

2021 ◽  
Vol 119 (13) ◽  
pp. 132402
Author(s):  
Shangkun Li ◽  
Yanxiang Luo ◽  
Qian Chen ◽  
Weiming Lv ◽  
Yuhang Song ◽  
...  
Keyword(s):  

2021 ◽  
Vol 104 (1) ◽  
Author(s):  
Jun Deng ◽  
Ning Liu ◽  
Jiangang Guo ◽  
Xiaolong Chen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document