scholarly journals Thermodynamic driving force of transient negative capacitance of ferroelectric capacitors

2021 ◽  
Vol 119 (2) ◽  
pp. 022901
Author(s):  
Yuanyuan Zhang ◽  
Xiaoqing Sun ◽  
Junshuai Chai ◽  
Hao Xu ◽  
Xueli Ma ◽  
...  
2021 ◽  
Vol 26 ◽  
pp. 102076
Author(s):  
Georgia Andra Boni ◽  
Cristina Chirila ◽  
Lucian Dragos Filip ◽  
Ioana Pintilie ◽  
Lucian Pintilie

2021 ◽  
Author(s):  
Yuan-Yuan Zhang ◽  
Xiao-Qing Sun ◽  
Jun-Shuai Chai ◽  
Hao Xu ◽  
Xue-Li Ma ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
David Esseni ◽  
Riccardo Fontanini

The negative capacitance (NC) operation of ferroelectric materials has been originally proposed based on a homogeneous Landau theory, leading to a simple NC stabilization condition expressed in terms of macroscopic...


2014 ◽  
Vol 898 ◽  
pp. 161-163
Author(s):  
Dong Ming Duan ◽  
Meng Xia Tang ◽  
Run Wu ◽  
Yong Bu ◽  
Xiao Chen

The weldability of the steel can be improved by formation of intra-granular ferrite (IGF) in heat affected zones (HAZs) on the edge of weld bead. The nucleation mechanism of IGF of Ti-killed high strength low alloyed (HSLA) steel has already been investigated with the aid of transmission electron microscope. Titanium oxides (Ti2O3) particles with the diameter of 0.4μm and Si-rich complex inclusions (Ti3O5+MnS) with that of 0.5μm can serve as the nuclei of IGF. The nucleation mechanism of IGF is proposed as follows: (1) inclusions are inert substrate. (2) The depletion of the austenite former Mn local to the inclusion increases the thermodynamic driving force of γα for transformation. (3) Lattice matching between inclusion and ferrite reduces the interfacial energy of opposing nucleation.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 699 ◽  
Author(s):  
Miloslav Pekař

Molar balances of continuous and batch reacting systems with a simple reaction are analyzed from the point of view of finding relationships between the thermodynamic driving force and the chemical reaction rate. Special attention is focused on the steady state, which has been the core subject of previous similar work. It is argued that such relationships should also contain, besides the thermodynamic driving force, a kinetic factor, and are of a specific form for a specific reacting system. More general analysis is provided by means of the non-equilibrium thermodynamics of linear fluid mixtures. Then, the driving force can be expressed either in the Gibbs energy (affinity) form or on the basis of chemical potentials. The relationships can be generally interpreted in terms of force, resistance and flux.


Sign in / Sign up

Export Citation Format

Share Document