Robust high-bandwidth control of nano-positioning stages with Kalman filter based extended state observer and H∞ control

2021 ◽  
Vol 92 (6) ◽  
pp. 065003
Author(s):  
Wei-Wei Huang ◽  
Linlin Li ◽  
Zhou-Long Li ◽  
Zhiwei Zhu ◽  
Li-Min Zhu
Author(s):  
Yi Zhang ◽  
Wenchao Xue ◽  
Li Sun ◽  
Jiong Shen

Path following control of underactuated autonomous vessels remains a challenging issue in recent years due to its inherent underactuation and nonlinearities as well as the widely existing disturbances in the marine environment. In order to accommodate all the difficulties simultaneously, a novel extended state Kalman filter, which adopts the idea of extended state observer in estimating and compensating system lumped disturbance and optimizes the filter gain in a real-time fashion using Kalman filter technique, is constructed to estimate system states and disturbances in the presence of model uncertainties and measurement noise. Based on the estimated states and disturbances, an enhanced model predictive controller is proposed to steer the underactuated autonomous vessels along a predefined path at a desired speed after considering system state and input constraints. Simulation results have proved the superiority of extended state Kalman filter over traditional extended state observer and extended Kalman filter under various disturbance and noise scenarios. Moreover, the comparison results with conventional proportion-integration-differentiation controller have demonstrated the feasibility and efficacy of the proposed extended state Kalman filter-based model predictive controller in both set-point tracking and disturbance rejection.


2021 ◽  
pp. 002029402110286
Author(s):  
Pu Yang ◽  
Peng Liu ◽  
ChenWan Wen ◽  
Huilin Geng

This paper focuses on fast terminal sliding mode fault-tolerant control for a class of n-order nonlinear systems. Firstly, when the actuator fault occurs, the extended state observer (ESO) is used to estimate the lumped uncertainty and its derivative of the system, so that the fault boundary is not needed to know. The convergence of ESO is proved theoretically. Secondly, a new type of fast terminal sliding surface is designed to achieve global fast convergence, non-singular control law and chattering reduction, and the Lyapunov stability criterion is used to prove that the system states converge to the origin of the sliding mode surface in finite time, which ensures the stability of the closed-loop system. Finally, the effectiveness and superiority of the proposed algorithm are verified by two simulation experiments of different order systems.


Author(s):  
Kejie Gong ◽  
Ying Liao ◽  
Yafei Mei

This article proposed an extended state observer (ESO)–based output feedback control scheme for rigid spacecraft pose tracking without velocity feedback, which accounts for inertial uncertainties, external disturbances, and control input constraints. In this research, the 6-DOF tracking error dynamics is described by the exponential coordinates on SE(3). A novel continuous finite-time ESO is proposed to estimate the velocity information and the compound disturbance, and the estimations are utilized in the control law design. The ESO ensures a finite-time uniform ultimately bounded stability of the observation states, which is proved utilizing the homogeneity method. A non-singular finite-time terminal sliding mode controller based on super-twisting technology is proposed, which would drive spacecraft tracking the desired states. The other two observer-based controllers are also proposed for comparison. The superiorities of the proposed control scheme are demonstrated by theory analyses and numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document