Spiral spring and planetary gear based regenerative braking system design for bicycles

2021 ◽  
Author(s):  
Amit Khokhri ◽  
Sachit Agarwal ◽  
Shashwat Salil Yashwardhan ◽  
Bikash Routh
Author(s):  
Yuzhuo Tai ◽  
Jian Song ◽  
Liangyao Yu ◽  
Shengnan Fang ◽  
Truong Sinh Nguyen

Regenerative braking of EV (electric vehicle) can enhance fuel efficiency to a great extent in urban areas. In addition, transmission plays a great role on the vehicle fuel economy and comfort and there are some research focus on the multi-speed transmission on EV. However, only limited number of scholars discussed about the influence of multi-speed transmission system on regenerative braking system. This paper focus on the effects of Electric Vehicle equipped with a Two-speed Uninterrupted Mechanical Transmission., which consist of a set of planetary gear, band brake and friction clutch. The transmission is capable of achieving seamless downshift which indicates that it can still transfer torque while downshifting. At the same time, as traction interruption of shift exerted an influence on the comfort during brake, this article put forward with a cooperative control algorithm considering the real response of electrohydraulic braking system in order to compensate the traction interruption and established an dynamic simulation model to testify the algorithm. The transmission dynamic model is developed by utilizing Euler-Lagrange equations to derive the motion while the other models are some simplified models. The whole model is applied by using the SimDriveline library of the MATLAB/Simulink. The simulation results of EV which commit a downshift while brake and the EV keep the gear are compared at the last demonstrate that the downshift strategy can save more energy without excessive oscillations.


Author(s):  
Rafael Rivelino da Silva Bravo ◽  
Artur Tozzi C Gama ◽  
Amir Antonio Martins Oliveira ◽  
Victor Juliano De Negri

Author(s):  
Lingying Zhao ◽  
Min Ye ◽  
Xinxin Xu

To address the comfort of an electric vehicle, a coupling mechanism between mechanical friction braking and electric regenerative braking was studied. A cooperative braking system model was established, and comprehensive simulations and system optimizations were carried out. The performance of the cooperative braking system was analyzed. The distribution of the braking force was optimized by an intelligent method, and the distribution of a braking force logic diagram based on comfort was proposed. Using an intelligent algorithm, the braking force was distributed between the two braking systems and between the driving and driven axles. The experiment based on comfort was carried out. The results show that comfort after optimization is improved by 76.29% compared with that before optimization by comparing RMS value in the time domain. The reason is that the braking force distribution strategy based on the optimization takes into account the driver’s braking demand, the maximum braking torque of the motor, and the requirements of vehicle comfort, and makes full use of the braking torque of the motor. The error between simulation results and experimental results is 5.13%, which indicates that the braking force’s distribution strategy is feasible.


Author(s):  
Chaitanya Sankavaram ◽  
B. Pattipati ◽  
K. Pattipati ◽  
Yilu Zhang ◽  
M. Howell ◽  
...  

2013 ◽  
Author(s):  
Junzhi Zhang ◽  
Chen Lv ◽  
Xiaowei Yue ◽  
Mingzhe Qiu ◽  
Jinfang Gou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document