Cooperative Brake Control Strategy for Electric Vehicle Equipped With a Two-Speed Uninterrupted Mechanical Transmission

Author(s):  
Yuzhuo Tai ◽  
Jian Song ◽  
Liangyao Yu ◽  
Shengnan Fang ◽  
Truong Sinh Nguyen

Regenerative braking of EV (electric vehicle) can enhance fuel efficiency to a great extent in urban areas. In addition, transmission plays a great role on the vehicle fuel economy and comfort and there are some research focus on the multi-speed transmission on EV. However, only limited number of scholars discussed about the influence of multi-speed transmission system on regenerative braking system. This paper focus on the effects of Electric Vehicle equipped with a Two-speed Uninterrupted Mechanical Transmission., which consist of a set of planetary gear, band brake and friction clutch. The transmission is capable of achieving seamless downshift which indicates that it can still transfer torque while downshifting. At the same time, as traction interruption of shift exerted an influence on the comfort during brake, this article put forward with a cooperative control algorithm considering the real response of electrohydraulic braking system in order to compensate the traction interruption and established an dynamic simulation model to testify the algorithm. The transmission dynamic model is developed by utilizing Euler-Lagrange equations to derive the motion while the other models are some simplified models. The whole model is applied by using the SimDriveline library of the MATLAB/Simulink. The simulation results of EV which commit a downshift while brake and the EV keep the gear are compared at the last demonstrate that the downshift strategy can save more energy without excessive oscillations.

Author(s):  
Chaitanya Sankavaram ◽  
B. Pattipati ◽  
K. Pattipati ◽  
Yilu Zhang ◽  
M. Howell ◽  
...  

2012 ◽  
Vol 157-158 ◽  
pp. 542-545 ◽  
Author(s):  
Liang Chu ◽  
Liang Yao ◽  
Zi Liang Zhao ◽  
Wen Ruo Wei ◽  
Yong Sheng Zhang

The Anti-lock Braking System (ABS) of Electric Vehicle (EV) is improved in this paper. Based on the research of system structure and motor, a new method is proposed to adjust the threshold and coordinate the motor braking force with the friction braking force. So the traditional threshold control algorithm of ABS is improved for the EV. The simulation results based on the MATLAB/Simulink model indicate that the improved ABS can keep the wheels in the stability region and decrease the motor regenerative braking force as soon as possible. The balance between brake safety and energy recovery is achieved through this method.


2014 ◽  
Vol 577 ◽  
pp. 408-411
Author(s):  
Ren Guang Wang ◽  
Ming Jun Zhang ◽  
Chuan Long Shi

A new powertrain system was developed for electric vehicle driving application with adoption of one electric motor and one set of planetary gear set. With the control of fork, the sleeve of synchronizer can mesh two different parts on the left and right side; the system can provide pure electric driving, hybrid driving and regenerative braking operation modes to meet vehicle practical conditions. It can reduce both power train structure size and cost with fewer parts.


2012 ◽  
Vol 490-495 ◽  
pp. 195-202 ◽  
Author(s):  
Xiao Bing Ning ◽  
Yao Ting Xu ◽  
Qiu Cheng Wang ◽  
Jue Jiang Chen

In order to increase the regenerative braking energy recovery and the dynamic performance of vehicle start and acceleration in the stage of brake, the hydraulic braking energy recovery system was used with the storage battery braking energy recovery system after comparing kinds of regenerative braking recovery plan and energy storage method. The system was used to do simulation and analysis in vehicle dynamic performance and energy recovery efficiency under the PID control and ECE-15 cycle. The system simulation and analysis results show that using hydraulic regenerative braking system in pure electric vehicle can significantly improve the ability of vehicle’s start-acceleration and the increase in vehicle driving range of around 28%.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Guodong Yin ◽  
XianJian Jin

A new cooperative braking control strategy (CBCS) is proposed for a parallel hybrid electric vehicle (HEV) with both a regenerative braking system and an antilock braking system (ABS) to achieve improved braking performance and energy regeneration. The braking system of the vehicle is based on a new method of HEV braking torque distribution that makes the antilock braking system work together with the regenerative braking system harmoniously. In the cooperative braking control strategy, a sliding mode controller (SMC) for ABS is designed to maintain the wheel slip within an optimal range by adjusting the hydraulic braking torque continuously; to reduce the chattering in SMC, a boundary-layer method with moderate tuning of a saturation function is also investigated; based on the wheel slip ratio, battery state of charge (SOC), and the motor speed, a fuzzy logic control strategy (FLC) is applied to adjust the regenerative braking torque dynamically. In order to evaluate the performance of the cooperative braking control strategy, the braking system model of a hybrid electric vehicle is built in MATLAB/SIMULINK. It is found from the simulation that the cooperative braking control strategy suggested in this paper provides satisfactory braking performance, passenger comfort, and high regenerative efficiency.


Sign in / Sign up

Export Citation Format

Share Document