Nonlinear variation of resonant frequency with temperature and temperature-dependent τf in Al2O3–TiO2 microwave dielectric composites

2021 ◽  
Vol 118 (21) ◽  
pp. 212902
Author(s):  
Lei Li ◽  
Shuang Yang ◽  
Shu Ya Wu ◽  
Xiang Ming Chen
2021 ◽  
Author(s):  
Weijia Guo ◽  
Zhiyu Ma ◽  
Yu Luo ◽  
Yugu Chen ◽  
Zhenxing Yue ◽  
...  

Abstract Ba4Nd9.33Ti18-zAl4z/3O54 (BNT-A, 0 ≤ z ≤ 2) and Ba4Nd9.33+z/3Ti18-zAlzO54 (BNT-AN, 0 ≤ z ≤ 2) ceramics were prepared by solid state method, and the effects of the two doping methods on microwave dielectric properties were compared. As the doping amount z increased, the relative dielectric constant (εr) and the temperature coefficient of resonant frequency (τf) values of the ceramics decreased, and the quality factor (Q, usually expressed by Q×f, where f is the resonant frequency) of the ceramics obviously increased when z ≤ 1.5. With the same z value, the εr and Q×f values of Al/Nd co-doped ceramics are both higher than those of Al-doped ceramics. Rietveld refinement, Raman spectroscopy and thermally stimulated depolarization current (TSDC) technique were applied to clarify the relationship among the structure, defects and microwave dielectric properties. It is shown that the Q×f values of those ceramics were closely related to the strength of the A-site cation vibration and the concentration of oxygen vacancies (B). Excellent microwave dielectric properties of εr = 72.2, Q×f = 16480 GHz, and τf = +14.3 ppm/℃ were achieved in BNT-AN ceramics with z = 1.25.


1999 ◽  
Vol 14 (9) ◽  
pp. 3567-3570 ◽  
Author(s):  
Ji-Won Choi ◽  
Chong-Yun Kang ◽  
Seok-Jin Yoon ◽  
Hyun-Jai Kim ◽  
Hyung-Jin Jung ◽  
...  

The microwave dielectric properties of Ca[(Li1/3Nb2/3)1−xMx]O3−δ (M = Sn, Ti, 0 ≤ x ≤ 0.5) ceramics were investigated. In general, the ceramics prepared were multiphase materials. However, single-phase specimens having orthorhombic perovskite structure similar to CaTiO3 could be obtained in the vicinity of Sn = 0.2 to 0.3, and Ti = 0.2. As Sn concentration increased, the dielectric constant (εr) decreased and the quality factor (Q) significantly increased within the limited Sn concentration. As Ti concentration increased, the dielectric constant (εr) increased, the quality factor (Q) decreased, and the temperature coefficient of resonant frequency (τf) changed from a negative to positive value. The temperature coefficient of resonant frequency of 0 ppm/°C was realized at Ti = 0.2. The Q · fo value and εr for this composition were found to be 26100 GHz and 38.6, respectively.


2001 ◽  
Vol 16 (6) ◽  
pp. 1734-1738 ◽  
Author(s):  
Yong Jun Wu ◽  
Xiang Ming Chen

The effects of Bi substitution for Nd in Ba6−3xNd8+2xTi18O54 (x = 2/3) solid solution upon the microstructures and microwave dielectric properties were investigated. The solid solubility limit of Bi in Ba6−3xNd8+2xTi18O54 (x = 2/3) solid solution was about 15 mol%, the same as that for x = 0.5, and densification of the present solid solutions could be performed well at lower temperatures. However, the variation tendency of microwave dielectric properties with composition in the present ceramics quite differed from that for x = 0.5: (1) The temperature coefficient of resonant frequency in the present ceramics showed a continuous variation from positive to negative and did not indicate extreme value at the solid solubility limit. (2) Near-zero temperature coefficient of resonant frequency combined with high-ε and high-Qf values could be obtained in the present ceramics, while that for x = 0.5 had a lower limit of +15 ppm/°C. (3) The dielectric constant also showed a continuous increase for the present compositions, while that in x = 0.5 had an extreme at solid solubility limit. Ceramics with composition of Ba6−3x(Nd0.85,Bi0.15)8+2xTi18O54 (x = 2/3) showed excellent dielectric properties of ε = 99.1, Qf = 5290 GHz, and τf = −5.5 ppm/°C.


Sign in / Sign up

Export Citation Format

Share Document