scholarly journals Analysis of a three-stator multi-degree-of-freedom piezoelectric actuator based on symmetrical distribution

AIP Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 095117
Author(s):  
Zheng Li ◽  
Haitao Han ◽  
Zhanyu Guo ◽  
Zhirong Su ◽  
Hexu Sun
2018 ◽  
Author(s):  
Dalius Mazeika ◽  
Ramutis Bansevicius ◽  
Vytautas Jurenas ◽  
Genadijus Kulvietis ◽  
Sergejus Borodinas

2019 ◽  
Vol 90 (3) ◽  
pp. 036102
Author(s):  
Z. C. Ma ◽  
X. J. Du ◽  
X. X. Ma ◽  
H. W. Zhao ◽  
F. Zhang ◽  
...  

2018 ◽  
Vol 8 (12) ◽  
pp. 2492
Author(s):  
Liling Han ◽  
Liandong Yu ◽  
Chengliang Pan ◽  
Huining Zhao ◽  
Yizhou Jiang

A novel impact two-degree-of-freedom (2-DOF) motor based on the decomposed screw-type motion of a piezoelectric actuator (PA) has been proposed. The fabricated prototype motor has a maximum diameter of 15 mm and a length of 100 mm which can produce a maximum torsional angle of about 1000 μrad and a maximum longitudinal displacement of about 1.03 μm under a saw-shaped driving voltage with 720 Vp-p (peak-to-peak driving voltage). When the axial prepressure generated by the spring is about 1N and the radial prepressure generated by the snap ring is about 14 N, the fabricated motor realizes rotary motion with the driving frequency from 200 Hz to 4 kHz. When the axial prepressure generated by the spring is about 11.7 N and the radial prepressure generated by the snap ring is about 21.1 N, the fabricated motor realizes linear motion with the driving frequency from 2 kHz to 11 kHz. In the experiments, the prototype motor can achieve 9.9 × 105 μrad/s rotary velocity at 2 kHz and it can achieve 2.4 mm/s linear velocity at 11 kHz under the driving voltage of 720 Vp-p.


1998 ◽  
Author(s):  
Timothy N. Chang ◽  
Xuemei Sun ◽  
Vincenzo Pappano ◽  
Zhiming Ji ◽  
Reggie Caudill

Author(s):  
Jau-Liang Chen ◽  
Yan-Ming Chen

The purpose of this research is trying to design a 6 degree-of-freedom micro-precision positioning stage with monolithic mechanism. It is hoped that this stage can reach 10 μm strokes along linear axis and with rotational angle no less than 50 μrad. The dimension of this positioning stage should be less than 200 mm × 200 mm × 50 mm. By using flexure hinge and piezoelectric actuator, this stage can achieve nanometer resolution. From the experimental results, it is found that the stage can achieve a maximum displacement of 29.3 μm in X axis; 11.94 μm in Y axis; and 6.74 μm in Z axis. The stage can also achieve a maximum rotation of 405.41 μrad around Z axis; 57.18 μrad around X axis; and 63.72 μrad around Y axis. With open loop control, we have shown that the minimum step for the stage is 110 nm in X-axis; 45 nm in Y axis; and 30 nm in Z-axis.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Daniel Prusak ◽  
Konrad Kobus ◽  
Grzegorz Karpiel

A study of the inverse kinematics for a five-degree-of-freedom (DOF) spatial parallel micromanipulator is presented here below. The objective of this paper is the introduction of a structural and geometrical model of a novel five-degree-of-freedom spatial parallel micromanipulator, analysis of the effective and useful workspace of the micromechanism, presentation of the obtained analytical solutions of the microrobot’s inverse kinematics tasks, and verification of its correctness using selected computer programs and computation environments. The mathematical model presented in this paper describes the behaviour of individual elements for the applied 2-DOF novel piezoelectric actuator, resulting from the position and orientation of the microrobot’s moving platform.


Sign in / Sign up

Export Citation Format

Share Document