Bouncing dynamics of spheroidal drops on macro-ridge structure

2021 ◽  
Vol 33 (7) ◽  
pp. 072111
Author(s):  
Sungchan Yun
Keyword(s):  
2003 ◽  
Vol 70 ◽  
pp. 201-212 ◽  
Author(s):  
Hideaki Nagase ◽  
Keith Brew

The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs), enzymes that play central roles in the degradation of extracellular matrix components. The balance between MMPs and TIMPs is important in the maintenance of tissues, and its disruption affects tissue homoeostasis. Four related TIMPs (TIMP-1 to TIMP-4) can each form a complex with MMPs in a 1:1 stoichiometry with high affinity, but their inhibitory activities towards different MMPs are not particularly selective. The three-dimensional structures of TIMP-MMP complexes reveal that TIMPs have an extended ridge structure that slots into the active site of MMPs. Mutation of three separate residues in the ridge, at positions 2, 4 and 68 in the amino acid sequence of the N-terminal inhibitory domain of TIMP-1 (N-TIMP-1), separately and in combination has produced N-TIMP-1 variants with higher binding affinity and specificity for individual MMPs. TIMP-3 is unique in that it inhibits not only MMPs, but also several ADAM (a disintegrin and metalloproteinase) and ADAMTS (ADAM with thrombospondin motifs) metalloproteinases. Inhibition of the latter groups of metalloproteinases, as exemplified with ADAMTS-4 (aggrecanase 1), requires additional structural elements in TIMP-3 that have not yet been identified. Knowledge of the structural basis of the inhibitory action of TIMPs will facilitate the design of selective TIMP variants for investigating the biological roles of specific MMPs and for developing therapeutic interventions for MMP-associated diseases.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Minoru Moriyama ◽  
Kouji Yasuyama ◽  
Hideharu Numata

AbstractInsect eggshells must meet various demands of developing embryos. These demands sometimes conflict with each other; therefore, there are tradeoffs between eggshell properties, such as robustness and permeability. To meet these conflicting demands, particular eggshell structures have evolved in diverse insect species. Here, we report a rare eggshell structure found in the eggshell of a cicada, Cryptotympana facialis. This species has a prolonged egg period with embryonic diapause and a trait of humidity-inducible hatching, which would impose severe demands on the eggshell. We found that in eggs of this species, unlike many other insect eggs, a dedicated cleavage site, known as a hatching line, was formed not in the chorion but in the serosal cuticle. The hatching line was composed of a fine furrow accompanied by ridges on both sides. This furrow-ridge structure formed in the terminal phase of embryogenesis through the partial degradation of an initially thick and nearly flat cuticle layer. We showed that the permeability of the eggshell was low in the diapause stage, when the cuticle was thick, and increased with degradation of the serosal cuticle. We also demonstrated that the force required to cleave the eggshell was reduced after the formation of the hatching line. These results suggest that the establishment of the hatching line on the serosal cuticle enables flexible modification of eggshell properties during embryogenesis, and we predict that it is an adaptation to maximize the protective role of the shell during the long egg period while reducing the barrier to emerging nymphs at the time of hatching.


1991 ◽  
Vol 27 (1) ◽  
pp. 93-95 ◽  
Author(s):  
M. Blez ◽  
C. Kazmierski ◽  
M. Quillec ◽  
D. Robein ◽  
M. Allovon ◽  
...  
Keyword(s):  

2005 ◽  
Vol 27 (10) ◽  
pp. 1642-1646 ◽  
Author(s):  
W.S. Yang ◽  
H.-Y. Lee ◽  
W.K. Kim ◽  
D.H. Yoon

Author(s):  
Oddgeir Dalane ◽  
Vegard Aksnes ◽  
Sveinung Løset

First-year sea ice ridges are a major concern for structures operating in the Arctic offshore and will in many cases give the design mooring load. In this paper, the response of a moored conical floater, somewhat similar to the well-known Kulluk, is studied in first-year ridges. The study is based on model tests performed at Hamburg Ship Model Basin (HSVA) in several ridges with different properties. Mooring forces and floater response, resulting from interaction with different ridges, were compared with respect to ridge properties, ridge behavior, and simulated ice management. Clearance of accumulated rubble upstream the structure was the dominating physical process in the ridge–structure interaction. Accumulation of rubble caused large mooring forces. The amount of accumulated rubble depended on the ridge cross-sectional area, thus the mooring forces increased with ridge cross-sectional area. Large mooring forces were also experienced after the ridge was passed by the structure due to difficulties with clearing of accumulated rubble.


2021 ◽  
Author(s):  
Takuo Hiratani ◽  
Naoki Fujiwara ◽  
Takehiko Kikuchi ◽  
Naoko Inoue ◽  
Tsutomu Ishikawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document