mooring forces
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 9 (12) ◽  
pp. 1364
Author(s):  
Jianting Guo ◽  
Yongbin Zhang ◽  
Chunyan Ji ◽  
Xiangqian Bian ◽  
Sheng Xu

As the technical and theoretical research of floating breakwaters is becoming increasingly mature, the floating breakwaters are now being utilized, especially in offshore reefs. Therefore, it is of practical significance to study the hydrodynamic performance of a multi-module floating breakwater system under the influence of reefs. In this study, a 3D model experiment was carried out on a system consisting of eight three-cylinder floating breakwater modules under the influence of reefs. A wave attenuation mesh cage was incorporated at the bottom of the model. The floating breakwater system was slack-moored in its equilibrium position, and each module was connected by elastic connectors. The reefs were modeled on a bathymetric map of existing reefs in the East China Sea. In this experiment, the wave transmission coefficients, motion responses, and mooring forces of the floating breakwater system were measured. The results showed that the three-cylinder floating breakwater in the beam waves (β = 90°) has excellent wave attenuating performance under the influence of reefs, especially for short-period waves. However, under the influence of the reef reflection wave and the shallow water effect, the motion responses in the three main stress directions of the floating breakwater were large, and there was some surge and pitch motion. Under the influence of the aggregation and superposition of reflected waves on both sides of the reefs, the peak mooring forces in the middle position of the floating breakwater system were the largest at large wave height. The three-cylinder floating breakwater exhibited satisfactory hydrodynamic performance under the influence of reefs. It has broad application prospects in offshore reefs.


Author(s):  
Liliana PINHEIRO ◽  
Conceicao FORTES ◽  
Maria Teresa REIS ◽  
Joao SANTOS ◽  
Carlos GUEDES SOARES

Port terminals downtimes lead to large economic losses and largely affect the port's overall competitiveness. In the majority of cases, port activities such as ships' approach maneuvers and loading/unloading operations, are conditioned or suspended, based solely on weather or wave forecasts. These forecasts do not always result in effective hazardous conditions for the ships. Additionally, moored ships often experience problems of excessive movements and mooring forces in apparent good weather conditions. If, instead, one could forecast the ships' movements and mooring forces, risk assessment would be much more accurate. This would allow selecting an appropriate reinforced mooring arrangement and thus minimizing effective terminal downtime. In this paper, the development of a risk forecast system for moored ships, that takes into account all of the moored ship's system, is detailed and an illustration on how it applies to real ports is presented.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/ugDN9Tqno3E


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xuebin Chen ◽  
Zhiwu Chen ◽  
Shuqun Cai ◽  
Wei Xu ◽  
Xianrong Zhuo ◽  
...  

Abstract Based on Navier–Stokes equations, a numerical model for studying the dynamic responses and mooring forces of the moored Submerged Floating Tunnel (SFT) driven by surface waves is presented in this paper. The mechanics models of the vertically and inclinedly moored floating body under wave forces are built, and the overset meshing method is employed to dynamically configure the computational meshes. Two laboratory experiments are used for validating the numerical model in terms of motion responses and mooring forces of the SFT, indicating the proposed model is capable of accurately simulating the instantaneous position of the body under the wave action. This hydrodynamic model is then utilized to simulate the wave–structure interaction of the prototype SFT designed for Qiongzhou Strait located between Mainland China and Hainan Island. The effects of the fundamental structure parameter, or the inclined mooring angle (IMA), on the dynamic responses of SFT are analyzed. The numerical experiments not only shed light on the mooring forces, as well as pitch, sway and heave responses of the SFT with various values of IMA, but also provide guidance for the choice of IMA in engineering design. The range of IMA is separated into five zones, and Zone 2 is regarded as the best choice for the design of IMA for both motion displacements and mooring forces are relatively small in this zone. Zone 3 is considered to be the worst choice as not only are motion responses of SFT severe in this zone, but also the mooring chains are at the risk of going slack under severe wave conditions.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2818
Author(s):  
Peter Stansby ◽  
Efrain Carpintero Moreno

There has been considerable modelling and wave basin validation of the multi-mode, multi-float, moored wave energy converter M4. The 6 float (2 power take off) (PTO) configuration is considered here with mooring from a buoy with light inextensible cables. Large mean mooring forces and very large peak or snap forces were measured in large waves while the rotational response about the hinges (for power take off in operational conditions) was predominantly linear. Modelling has been extended with elastic mooring cables connected directly to the base of the bow float and to the buoy. The experimental mean force is input to the linear diffraction/radiation model. The device response is effectively unchanged. The peak mooring force and tensions remain large with direct connection to the base of the bow float but are only slightly greater than the mean forces with elastic cables to the buoy, and an elastic hawser provides a further slight reduction. For the largest waves measured, the force was about 10% of the dry weight of the platform. The idealized efficient modelling may inform more detailed design while efficient methods for determining highly nonlinear mean forces remain to be established.


2020 ◽  
Vol 15 (sup1) ◽  
pp. S70-S81
Author(s):  
Jonas W. Ringsberg ◽  
Shun-Han Yang ◽  
Xiao Lang ◽  
Erland Johnson ◽  
Jonas Kamf

Author(s):  
P. K. Stansby ◽  
E. Carpintero Moreno

Abstract Linear diffraction modelling of irregular wave structure interaction is standard practice in both the frequency and time domains for fixed and floating bodies. This has been extended for the modular wave energy converter M4 with multiple floats and power take offs. In the time domain second-order forces assuming a stationary body have been added for floating wind energy platforms. This misses second-order, including mean, effects due to radiation damping, drag forces and the mechanical damping of wave energy conversion. If these are linearized they may be included in a frequency domain analysis. However mechanical damping and mooring forces on slack-moored platforms are generally highly nonlinear and time domain analysis is required. In this paper response is first computed with linear analysis and mechanical damping which has been shown to give reasonable prediction of experimental measurement for the response and power output of M4. The response gives the absorbed energy flux due to mechanical and radiation damping which is converted into a mean force through an average wave celerity. The model is extended to include a mooring and these mean forces; the computation is then repeated. The mean forces have negligible effect on response and associated power take off but determine the mooring forces. For a slack mooring zero stiffness is assumed. Comparing with wave basin experiments for the 6-float M4 configuration in operational conditions, mean mooring forces are generally underestimated, markedly for larger periods.


Author(s):  
Shigeki SAKAKIBARA ◽  
Shunji SUNAHARA ◽  
Ikuo ABE ◽  
Masayoshi KUBO ◽  
Masanori TSUGANE

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3535 ◽  
Author(s):  
Luca Martinelli ◽  
Barbara Zanuttigh

The paper aims at investigating the interactions between a floating wave energy device (WEC) and its mooring system under a variety of wave conditions (regular and irregular, perpendicular and oblique, ordinary and extreme). The analyzed WEC is the DEXA, a wave activated body point absorber, of the type that performs better when aligned to the incident wave direction. Two typologies of mooring systems were studied: for limited depths, the spread system, with a disposition of the lines that do not constrain the yaw movements; for large depths, the catenary anchor leg mooring (CALM) system. The spread system was experimentally investigated, including a realistic power take-off system, to capture non-linear behaviors and assess device motions, power production, and forces on mooring lines. The CALM system was numerically simulated, as mooring modelling is more reliable in deep waters and allows testing of a number of different configurations, by changing the number of the mooring lines and the mooring layout. The experiments showed that a reduction of the mooring compliancy increases the power production. The numerical simulations showed that a redundancy on the number of chains allows a better distribution of the loads, with advantages on reliability and costs.


Author(s):  
S. Neelamani ◽  
Josko Ljubic

Floating breakwaters (FBWs) are widely used in moderate wave climatic conditions for coastal protection against erosion and for wave reduction around offshore loading terminals and open ocean construction sites. Literature shows that the width of a pontoon-type FBW is about 50% of the incident wavelength in order to achieve 50% wave height reduction at the lee side of the FBW. Hence, for a typical wavelength of 40 m, the width needed for pontoon FBW is about 20 m. Such an FBW may not be cost competitive. Is it possible to reduce the width of the pontoon FBW significantly by adding skirt walls (single, twin, triple, or five) at its keel. What will be the effect on mooring forces? In order to find solutions for these problems, experimental investigations were carried out on a typical pontoon-type FBW as well as pontoon with skirt walls. Both opaque and porous skirt walls were used. Wave transmission, reflection, and mooring forces, both on the sea side and lee side, were measured. It was found from this study that it is possible to reduce the width by 20 to 40% by introducing three or five skirt walls. However, introducing skirt walls increased the mooring forces by 10 to 30%. The results of this study are expected to be useful for cost-effective design of FBWs.


Sign in / Sign up

Export Citation Format

Share Document