ridge structure
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 30)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 906 (1) ◽  
pp. 012086
Author(s):  
Tatyana Ponomareva ◽  
Tatyana Shumilova

Abstract The shock waves can strongly change the physical properties of the target rock minerals including their density and magnetism which determine petrochemical properties of impactites finely as a rule are resulted in astroblemes contours on geophysical maps. Following to the aero-magnetic mapping data the non-magnetic sedimentary rocks of the Kara target create a zero and negative magnetic field with an average intensity of -1 nT, against the background the southwestern region of the Kara astrobleme provides the positive magnetic anomalies with an intensity of 1 to 3 nT which are in a good correspondence with the Pay-Khoy ridge structure general orientation. The Kara dome is characterised with an isometric negative anomaly of intensity -5 nT. Here we present the magnetic properties of the different kinds of the Kara impactites including impact ultra-high pressure high temperature (UHPHT) melt glasses, melt rocks and suevitic breccia compare to sedimentary target rocks. The petrophysical measurements presented the specific magnetic susceptibility of the impactites in the range of 8 to 48×10-8 SI units, where the UHPHT glasses have the limits from 9 to 38×10-8 SI units (15×10-8 SI units, in average). The sedimentary target is characterised with essentially lower level of magnetic susceptibility – no higher than 15×10-8 SI units, where limestone has it about zero. Following to the similar level of the iron content within the impactites and target rocks the magnetism of the Kara impact melts is explained rather by changing of magnetic properties by the impact process. One of the possible source of magnetism can be partially an iron-containing matter of the asteroid component in the form of pyrrhotine accompanied with Ni and Co impurities. Also, we cannot exclude partial presence of magnetic iron component directly within the quenched impact glasses including UHPHT variety.


2021 ◽  
Author(s):  
Takuo Hiratani ◽  
Naoki Fujiwara ◽  
Takehiko Kikuchi ◽  
Naoko Inoue ◽  
Tsutomu Ishikawa ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2559
Author(s):  
Shiliang Guo ◽  
Xin Li ◽  
Zechen Guo ◽  
Xingtao Zhao ◽  
Shuhan Meng ◽  
...  

In this paper, we propose a polarization-independent optoelectronic modulator based on the electrical absorption effect of graphene. Firstly, we use the simulation software COMSOL Multiphysics to design the structure, and find via changing the applied voltage on both ends of the graphene that the equivalent refractive index of graphene can be changed, thus changing the light absorption capacity of the modulator. The waveguides in the transverse magnetic (TM) and transverse electric (TE) modes have almost the same extinction coefficient by making a double-layer graphene ridge structure in the center of the silicon-based waveguide, which can achieve approaching modulation depth in the TM and TE modes. At 1550 nm wavelength, the two-dimensional cross-section of the structure is analyzed by the FEM method using COMSOL Multiphysics to obtain the effective refractive index of the structure. The simulation results show that when the distance between the double-layer graphene isolation layer is d = 20 nm, the TE and TM modes can achieve extinction ratios up to 110 dB over the wide communication band by selecting appropriate “ON” and “OFF” switching points. The bandwidth is 173.78 GHz and the insertion loss is only 0.0338 dB.


Genetics ◽  
2021 ◽  
Author(s):  
Jennifer D Cohen ◽  
Carla E Cadena del Castillo ◽  
Nicholas D Serra ◽  
Andres Kaech ◽  
Anne Spang ◽  
...  

Abstract The Patched-related superfamily of transmembrane proteins can transport lipids or other hydrophobic molecules across cell membranes. While the Hedgehog receptor Patched has been intensively studied, much less is known about the biological roles of other Patched-related family members. Caenorhabditis elegans has a large number of Patched-related proteins, despite lacking a canonical Hedgehog pathway. Here, we show that PTR-4 promotes the assembly of the precuticle apical extracellular matrix, a transient and molecularly distinct matrix that precedes and patterns the later collagenous cuticle or exoskeleton. ptr-4 mutants share many phenotypes with precuticle mutants, including defects in eggshell dissolution, tube shaping, alae (cuticle ridge) structure, molting, and cuticle barrier function. PTR-4 localizes to the apical side of a subset of outward-facing epithelia, in a cyclical manner that peaks when precuticle matrix is present. Finally, PTR-4 is required to limit the accumulation of the lipocalin LPR-3 and to properly localize the Zona Pellucida domain protein LET-653 within the precuticle. We propose that PTR-4 transports lipids or other hydrophobic components that help to organize the precuticle and that the cuticle and molting defects seen in ptr-4 mutants result at least in part from earlier disorganization of the precuticle.


2021 ◽  
Author(s):  
Satoshi Yagi

In this paper, we propose the concept of Android Printing, which is printing a full android, including skin and mechanical components in a single run using a multi-material 3-D printer. Printing an android all at once both reduces assembly time and enables intricate designs with a high degrees of freedom. To prove this concept, we tested by actual printing an android. First, we printed the skin with multiple annular ridges to test skin deformation. By pulling the skin, we show that the state of deformation of the skin can be adjusted depending on the ridge structure. This result is essential in designing humanlike skin deformations. After that, we designed and fabricated a 3-D printed android head with 31 degrees of freedom. The skin and linkage mechanism were printed together before connecting them to a unit combining several electric motors. To confirm our concept’s feasibility, we created several motions with the android based on human facial movement data. In the future, android printing might enable people to use an android as their own avatar.


2021 ◽  
Author(s):  
Satoshi Yagi

In this paper, we propose the concept of Android Printing, which is printing a full android, including skin and mechanical components in a single run using a multi-material 3-D printer. Printing an android all at once both reduces assembly time and enables intricate designs with a high degrees of freedom. To prove this concept, we tested by actual printing an android. First, we printed the skin with multiple annular ridges to test skin deformation. By pulling the skin, we show that the state of deformation of the skin can be adjusted depending on the ridge structure. This result is essential in designing humanlike skin deformations. After that, we designed and fabricated a 3-D printed android head with 31 degrees of freedom. The skin and linkage mechanism were printed together before connecting them to a unit combining several electric motors. To confirm our concept’s feasibility, we created several motions with the android based on human facial movement data. In the future, android printing might enable people to use an android as their own avatar.


2021 ◽  
Vol 33 (7) ◽  
pp. 072111
Author(s):  
Sungchan Yun
Keyword(s):  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Minoru Moriyama ◽  
Kouji Yasuyama ◽  
Hideharu Numata

AbstractInsect eggshells must meet various demands of developing embryos. These demands sometimes conflict with each other; therefore, there are tradeoffs between eggshell properties, such as robustness and permeability. To meet these conflicting demands, particular eggshell structures have evolved in diverse insect species. Here, we report a rare eggshell structure found in the eggshell of a cicada, Cryptotympana facialis. This species has a prolonged egg period with embryonic diapause and a trait of humidity-inducible hatching, which would impose severe demands on the eggshell. We found that in eggs of this species, unlike many other insect eggs, a dedicated cleavage site, known as a hatching line, was formed not in the chorion but in the serosal cuticle. The hatching line was composed of a fine furrow accompanied by ridges on both sides. This furrow-ridge structure formed in the terminal phase of embryogenesis through the partial degradation of an initially thick and nearly flat cuticle layer. We showed that the permeability of the eggshell was low in the diapause stage, when the cuticle was thick, and increased with degradation of the serosal cuticle. We also demonstrated that the force required to cleave the eggshell was reduced after the formation of the hatching line. These results suggest that the establishment of the hatching line on the serosal cuticle enables flexible modification of eggshell properties during embryogenesis, and we predict that it is an adaptation to maximize the protective role of the shell during the long egg period while reducing the barrier to emerging nymphs at the time of hatching.


Sign in / Sign up

Export Citation Format

Share Document