Influence of nickel on microstructure and weld metal toughness of shielded metal arc welded low carbon steel plates

2021 ◽  
Author(s):  
Herry Oktadinata ◽  
Sri Bimo Pratomo ◽  
Ridzki Maulana
Author(s):  
K Parthiban ◽  
S Mohan Kumar ◽  
A Rajesh Kannan ◽  
N Siva Shanmugam ◽  
K Sankaranarayanasamy

This work investigates the fatigue performance of 10 mm AISI C1018 low carbon steel plates welded with ER70S-6 using a gas metal arc welding-based spin-arc welding process. Welded joint microstructure is characterized by bainite, acicular ferrite, and allotriomorphic ferrite along with pearlite in the ferritic matrix. The tensile strength of the weld metal was comparable with base metal and meets the mechanical property requirements in accordance with the ASTM A311/A311M-04 (2020) standard. The fatigue strengths of base metal and weld metal are 121 and 126 MPa, respectively, after sustaining 106 cycles. During cyclic loading, fracture surfaces were distinctly noticed as the crack initiation, crack propagation, and final rupture regions. The decrease in alternating stress increased the fatigue cycles to final rupture, and the nature of fatigue fracture was ductile with dimples and voids.


2020 ◽  
Vol 1546 ◽  
pp. 012057
Author(s):  
I K Chenykh ◽  
E V Vasil’ev ◽  
A N Abakumov ◽  
N V Zakharova ◽  
K A Sinogina

2012 ◽  
Vol 581-582 ◽  
pp. 808-816 ◽  
Author(s):  
Chuaiphan Wichan ◽  
Srijaroenpramong Loeshpahn

The joining of austenitic stainless steel (AISI 201) to low carbon steel sheets (CS) was attempted by gas tungsten arc welding (GTAW) with four types of consumables. The studied consumables were ER308L, ER309L, ER316L stainless steel wires, and AWS A5.18 carbon steel wire. The welding parameters – i.e. the current of 90 A and the welding speed of 62 mm.min-1 – were fixed in all welding operations. The microstructure of weld metal produced by stainless steel consumables consisted of delta ferrite in austenite matrix. The delta ferrite in the form of continuous dendrite was observed in weld metals produced by 308L and 309L fillers. The dendrite of delta ferrite was relatively discontinuous in weld metal produced by 316L filler. The microstructure of weld metal produced by carbon steel filler consisted of equiaxed ferrite and pearlite, similar to that of carbon steel. The corrosion behavior of weld metal was investigated by potentiodynamic method. Specimens were tested in 0.35-wt% NaCl solution saturated by laboratory air at 27°C. It was found that the corrosion potential of weld metal produced by carbon steel filler was considerably lower than those of AISI 201 base metal and weld metals welded using stainless steel consumables. Weld metals produced by stainless steel fillers –308L,309L and316L– exhibited the similar corrosion potentials as that of 201 base metal. The pitting potentials of weld metals produced by 309L, 316L fillers were higher than those of 201 base metal and weld metal produced by 308L filler respectively. It was discussed that the increase of Cr content in weld metals by using 309L filler contained with 24.791 wt% of Cr, or the addition of Cr and Mo in weld metals by using 316L filler contained with 21.347 wt% of Cr and 2 wt% of Mo, promoted the pitting corrosion resistance of weld metal to be comparable with that of Fe-17Cr-3Ni (201) base metal. An emission spectroscopy was applied to quantify the amount of elements in weld metals. By considering the contents of Cr and Mo, the pitting resistance equivalent number (PREN) of each weld metal was calculated. The discussion of the corrosion resistance of weld metals related to PREN and microstructure was made in the paper.


1987 ◽  
Vol 9 (3) ◽  
pp. 253-267 ◽  
Author(s):  
P. F. Chaveriat ◽  
G. S. Kim ◽  
S. Shah ◽  
J. E. Indacochea

Sign in / Sign up

Export Citation Format

Share Document