Constitutive relations for slip and twinning in high rate deformations: A review and update

2021 ◽  
Vol 130 (24) ◽  
pp. 245103
Author(s):  
Ronald W. Armstrong
Author(s):  
Ronald W. Armstrong

Bertram Hopkinson was prescient in writing of the importance of better measuring, albeit better understanding, the nature of high rate deformation of materials in general and, in particular, of the importance of heat in initiating detonation of explosives. This report deals with these subjects in terms of post-Hopkinson crystal dislocation mechanics applied to high rate deformations, including impact tests, Hopkinson pressure bar results, Zerilli–Armstrong-type constitutive relations, shock-induced deformations, isentropic compression experiments, mechanical initiation of explosive crystals and shear banding in metals.


Author(s):  
L. E. Murr ◽  
G. Wong

Palladium single-crystal films have been prepared by Matthews in ultra-high vacuum by evaporation onto (001) NaCl substrates cleaved in-situ, and maintained at ∼ 350° C. Murr has also produced large-grained and single-crystal Pd films by high-rate evaporation onto (001) NaCl air-cleaved substrates at 350°C. In the present work, very large (∼ 3cm2), continuous single-crystal films of Pd have been prepared by flash evaporation onto air-cleaved (001) NaCl substrates at temperatures at or below 250°C. Evaporation rates estimated to be ≧ 2000 Å/sec, were obtained by effectively short-circuiting 1 mil tungsten evaporation boats in a self-regulating system which maintained an optimum load current of approximately 90 amperes; corresponding to a current density through the boat of ∼ 4 × 104 amperes/cm2.


Author(s):  
A. Elgsaeter ◽  
T. Espevik ◽  
G. Kopstad

The importance of a high rate of temperature decrease (“rapid freezing”) when freezing specimens for freeze-etching has long been recognized1. The two basic methods for achieving rapid freezing are: 1) dropping the specimen onto a metal surface at low temperature, 2) bringing the specimen instantaneously into thermal contact with a liquid at low temperature and subsequently maintaining a high relative velocity between the liquid and the specimen. Over the last couple of years the first method has received strong renewed interest, particularily as the result of a series of important studies by Heuser and coworkers 2,3. In this paper we will compare these two freezing methods theoretically and experimentally.


2001 ◽  
Author(s):  
Z. Steel ◽  
J. Jones ◽  
S Adcock ◽  
R Clancy ◽  
L. Bridgford-West ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document