The Perceived Spatial Frequency, Contrast, and Orientation of Illusory Gratings

Perception ◽  
1980 ◽  
Vol 9 (6) ◽  
pp. 695-712 ◽  
Author(s):  
Mark A Georgeson

Illusory vertical gratings (V) and diagonal gratings (D) can be seen on a uniform field after inspection of a vertical grating. When using simultaneous and successive matching techniques the spatial frequencies of the V effect were found to be about 2 octaves below and 1–2 octaves above the adapting spatial frequency, but to be invariant with temporal frequency. At high adapting frequencies the D effect dominated, and was about 0·8 octave below the adapting spatial frequency, oriented about ±35° from vertical. The apparent contrast of V was about twice the value of the contrast threshold at its apparent spatial frequency. D effects seen during adaptation were about 60° from vertical and 3 octaves below the adapting frequency. The results are interpreted in terms of inhibition and disinhibition in an organized matrix of tuned channels, and the dominant pattern of inhibition in the matrix is inferred. Supporting evidence from neurophysiology, neuroanatomy, and psychophysics is briefly reviewed. An appendix deals with the question of interocular transfer of the aftereffect.

Perception ◽  
1989 ◽  
Vol 18 (1) ◽  
pp. 39-54 ◽  
Author(s):  
Sofia M Würger ◽  
Michael S Landy

The interpolation of stereoscopic depth given only sparse disparity information was investigated. The basic stimulus was a rectangle with zero disparity at one edge, and 20 or 30 min visual angle disparity at the other. The depth assigned to the ambiguous intervening locations was measured by means of a small briefly-flashed binocular comparison spot. For a stimulus consisting of a uniform rectangle presented on a background of random dots with zero disparity, interpolated depth was greater for a high mean contrast between rectangle and background than for a low mean contrast. Relative to a linear interpolation between the edges, a larger difference in edge disparity resulted in poorer depth interpolation. Depth interpolation based on rivalrous information was examined by filling the stimulus rectangle with narrow-band filtered noise which was uncorrelated between the two eyes. Four different passbands which were matched in apparent contrast were investigated. The results demonstrate that the rivalrous low-spatial-frequency content was resistant to interpolation; rivalrous high spatial frequencies did not interfere with depth interpolation. High-spatial-frequency stimuli yielded a percept similar to the uniform-field condition, whereas low-spatial-frequency stimuli lay in a depth plane near or even behind the background. In the latter case a transparent plane was perceived which was linearly interpolated between the two edges, and which floated above the rivalrous noise.


Perception ◽  
1996 ◽  
Vol 25 (1_suppl) ◽  
pp. 12-12
Author(s):  
P J Bex ◽  
F A J Verstraten ◽  
I Mareschal

The motion aftereffect (MAE) was used to study the temporal-frequency and spatial-frequency selectivity of the visual system at suprathreshold contrasts. Observers adapted to drifting sine-wave gratings of a range of spatial and temporal frequencies. The magnitude of the MAE induced by the adaptation was measured with counterphasing test gratings of a variety of spatial and temporal frequencies. Independently of the spatial or temporal frequency of the adapting grating, the largest MAE was found with slowly counterphasing test gratings (∼0.125 – 0.25 Hz). For slowly counterphasing test gratings (<∼2 Hz), the largest MAEs were found when the test grating was of similar spatial frequency to that of the adapting grating, even at very low spatial frequencies (0.125 cycle deg−1). However, such narrow spatial frequency tuning was lost when the temporal frequency of the test grating was increased. The data suggest that MAEs are dominated by a single, low-pass temporal-frequency mechanism and by a series of band-pass spatial-frequency mechanisms at low temporal frequencies. At higher test temporal frequencies, the loss of spatial-frequency tuning implicates separate mechanisms with broader spatial frequency tuning.


1996 ◽  
Vol 75 (3) ◽  
pp. 1163-1176 ◽  
Author(s):  
P. Hammond ◽  
J. N. Kim

1. Single binocularly driven complex neurons in cat striate cortex were recorded extracellularly under nitrous oxide-oxygen-halothane anesthesia and muscle relaxant. Orientational/directional tuning was initially derived for each eye in turn, with sine wave gratings of optimal spatial frequency and velocity, while the other eye viewed a uniform field. 2. For the dominant eye, previously concealed suppression was revealed against elevated levels of firing induced with a conditioning grating, drifting continuously in the preferred direction, simultaneously presented to the nondominant eye. During steady-state binocular conditioning, orientational/directional tuning was reestablished for the dominant eye. In a subset of cells, tuning curves during conditioning were also derived for the reverse configuration, i.e., nondominant eye tuning, dominant eye conditioning: results were qualitatively identical to those for conditioning through the nondominant eye. 3. Neurons were initially segregated into five groups, according to the observed suppression profiles induced at nonoptimal orientations/directions during conditioning: Type 1, suppression centered on orthogonal directions; Type 2, suppression around null directions; Type 3, null suppression combined with orthogonal suppression; Type 4, lateral suppression, maximal for directions immediately flanking those inducing excitation; and Type 5, the residue of cells, totally lacking suppression or showing complex or variable suppression. 4. Sharpness of (excitatory) tuning was correlated with directionality and with class of suppression revealed during binocular conditioning. Direction-biased neurons were more sharply orientation tuned than direction-selective neurons; similarly, neurons exhibiting lateral or orthogonal suppression during conditioning were more sharply tuned than neurons with null suppression. 5. Application of suboptimal directions of conditioning weakened the induced suppression but altered none of its main characteristics. 6. The relationship between excitation, suppression, and spatial frequency was investigated by comparing tuning curves for the dominant eye at several spatial frequencies, without and during conditioning. End-stopped neurons preferred lower spatial frequencies and higher velocities of motion than non-end-stopped neurons. Confirming previous reports, suppression in some neurons was still present for spatial frequencies above the cutoff frequency for excitation, demonstrating the tendency for suppression to be more broadly spatial frequency tuned than excitation. 7. Scatterplots of strength of suppression, in directions orthogonal and opposite maximal excitation, partially segregated neurons of Types 1-3. Clearer segregation of Types 1-4 was obtained by curve-fitting to profiles of suppression, and correlating half-width of tuning for suppression with the angle between the directions of optimal suppression and optimal excitation in each neuron. 8. Two interpretations are advanced-the first, based on three discrete classes of inhibition, orthogonal, null and lateral; the second, based on only two classes, orthogonal and null/lateral--in which null and lateral suppression are manifestations of the same inhibitory mechanism operating, respectively, on broadly tuned direction-selective or on sharply tuned direction-biased neurons. Orthogonal suppression may be untuned for direction, whereas lateral and null suppression are broadly direction tuned. Within each class, suppression is more broadly spatial frequency tuned than excitation. 9. It is concluded that orientational/directional selectivity of complex cells at different spatial frequencies is determined by the balance between tuned excitation and varying combinations of relatively broadly distributed or untuned inhibition.


1986 ◽  
Vol 56 (4) ◽  
pp. 969-986 ◽  
Author(s):  
M. C. Morrone ◽  
M. Di Stefano ◽  
D. C. Burr

Neurons in the posteromedial lateral suprasylvian cortex (PMLS) of cats were recorded extracellularly to investigate their response to stimulation by bars and by sinusoidal gratings. Two general types of cells were identified: those that modulated in synchrony with the passage of drifting bars and gratings and those that responded with an unmodulated increase in discharge. Both types responded to contrast reversed gratings with a modulation of activity: the cells that modulated to drifting gratings modulated to the first harmonic of contrast reversed gratings (at appropriate spatial phase and frequency), whereas those that did not modulate to drifting gratings always modulated to the second harmonic of contrast reversed gratings. No cell had a clear null point. Nearly all cells were selective for spatial frequency. The preferred frequency ranged from 0.1 to 1 cycles per degree (cpd), and selectivity bandwidths (full width at half height) were around two octaves. Preferred spatial frequency was not correlated with receptive field size, but bandwidth and receptive field size were positively correlated. Preferred spatial frequency decreased with eccentricity, at about 0.05 octaves/deg. The response of all cells increased as a function of grating contrast up to a saturation level. The contrast threshold for response to a grating of optimal parameters was approximately 1% for most cells and the saturation contrast approximately 10%. The contrast gain was approximately 25 spikes/s per log unit of contrast. All cells were tuned for temporal frequency, preferring frequencies from approximately 3 to 10 Hz, with a selectivity bandwidth approximately 2 octaves. For some cells, the spatial selectivity did not depend on the temporal frequency and vice versa. Others were spatiotemporally coupled, with the preferred temporal frequency being lower at high than at low spatial frequencies, and the preferred spatial frequency lower at high than at low temporal frequencies. Previous results showing broad velocity tuning to a bar were replicated and found to be predictable from the combined spatial and temporal tuning of PMLS cells and the Fourier spectrum of a bar. Preferred temporal frequency steadily decreased with eccentricity, at 0.025 octaves/deg. The results for PMLS cells are compared with those of other visual areas. Acuity and spatial preference and selectivity bandwidth is comparable to all areas except area 17, where they are a factor of about two higher. Temporal selectivity in PMLS is as fine as observed in other areas. The possibility that PMLS cells may be involved with motion detection and detection of motion in depth is discussed.


1985 ◽  
Vol 54 (3) ◽  
pp. 691-700 ◽  
Author(s):  
I. Ohzawa ◽  
R. D. Freeman

We have studied electroretinograms (ERG) in the cat using phase-reversed sinusoidal gratings as a stimulus. Our purpose was to characterize response properties of this type of ERG. One basic question we addressed was whether the response to a grating stimulus is actually pattern specific. For the purpose of comparison, we used the same stimulus to investigate mass potentials from the lateral geniculate nucleus (LGN) and the visual cortex. The pattern ERG consists mainly of a vitreous negative after potential peaking shortly (120-200 ms) after reversal of the pattern. There is a notable absence in the pattern ERG of a b-wave that, however, can be elicited by a step increase of luminance over a uniform field. Pattern ERG amplitudes decrease monotonicaly with increasing spatial frequency and show no low-frequency attenuation when the pattern is phase reversed in square-wave fashion. This is markedly different than evoked potentials from the LGN and visual cortex that show band-pass characteristics. On the other hand, sinusoidal phase reversal reveals a clear attenuation of the pattern ERG amplitude at low spatial frequencies, whereas this type of stimulation produces very poor responses from LGN and visual cortex. The low spatial-frequency attenuation in the pattern ERG shows that the generating mechanism involves lateral interactions. There is thus a clear pattern-specific component in the pattern ERG. The pattern ERG has a surprisingly high contrast threshold relative to those estimated from cortical and LGN evoked potentials. Above threshold, pattern ERG response amplitude increases rapidly with contrast, but it often shows saturation at high contrast levels. These saturation points are generally high when contrast thresholds are high so that the rising portion of the contrast-response functions have fairly uniform slopes. Contrast-response curves from the LGN and cortical potentials are quite different from those for the retina in that amplitudes increase approximately linearly with log contrast over a 2-log-unit range (1 to 100%).


Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 48-48
Author(s):  
B Wink ◽  
J P Harris

It has been suggested that the Parkinsonian visual system is like the normal visual system, but is inappropriately dark-adapted (Beaumont et al, 1987 Clinical Vision Sciences2 123 – 129). Thus it is of interest to ask to what extent dark adaptation of normal subjects produces visual changes like those of Parkinson's disease (PD). One such change is the reduction in apparent contrast of medium and high spatial frequencies in peripheral vision in the illness (Harris et al, 1992 Brain115 1447 – 1457). Normal subjects judged whether the contrast of a peripherally viewed grating was higher or lower than that of a foveally viewed grating, and a staircase technique was used to estimate the point of subjective equality. Judgements were made at four spatial frequencies (0.5 to 4.0 cycles deg−1) and four contrasts (8.0% to 64%). The display, the mean luminance of which was 26 cd m−2, was viewed through a 1.5 lu nd filter in the relatively dark-adapted condition. The ANOVA showed an interaction between dark adaptation and the spatial frequency of the gratings. Dark adaptation reduces the apparent contrast of high-spatial-frequency gratings, an effect which is greater at lower contrasts. This mimics the effect found with PD sufferers, and suggests that dark adaptation may provide a useful model of the PD visual system. In a second experiment, the effect of dark adaptation on the relationship between apparent spatial frequency in the fovea and periphery was investigated. The experiment was similar to the first, except that judgements were made about the apparent spatial frequency, rather than the contrast, of the peripheral grating. ANOVA showed no differential effect of dark adaptation on the apparent spatial frequency of the peripheral grating. This suggests that the observed reduction in apparent contrast of the peripheral gratings in dark-adapted normals and Parkinson's sufferers may reflect relative changes in contrast gain, rather than relative changes in the spatial organisation of receptive fields.


1979 ◽  
Vol 80 (1) ◽  
pp. 191-216
Author(s):  
ROBERT B. PINTER

1. The descending contralateral movement detector (DCMD) of the locust responds vigorously to small target (ca. 5°) stimuli; this response is inhibited by simultaneous or subsequent rotation of a radial grating (windmill) pattern (subtending 19-90° of visual angle) and suppressed by earlier rotation. 2. The excitation produced in the DCMD by rotation of a radial grating pattern depends only on the spatial frequency of the stripes of the pattern, and is independent of pattern size, and of temporal frequency over the range of low values used. 3. The inhibition produced by this same stimulus similarly depends only on the spatial frequency of the stripes of the pattern, independent of pattern size, and of temporal frequency over the range of low values used. 4. As the radial grating excitation decreases with increasing spatial frequency, the inhibition increases until limited by optical and neural resolution. 5. For spatial frequencies of the radial grating pattern below 0.05 cyc/deg the radial grating patterns become excitatory. Above 0.05 cyc/deg they are inhibitory. This is the point in spatial frequency below which inhibitory grating ‘backgrounds’ become excitatory targets. 6. Inhibition decreases as the size of the radial grating pattern is decreased below 190 visual angle; at 8° or less no inhibition can be found at any spatial frequency. 7. Inhibition is greater in the posterior than anterior regions of the receptive field, and greater in the ventral than the dorsal regions. 8. Inhibition decreases as the distance between small target and the radial grating is increased, but this is influenced by the local variations of excitation and inhibition. 9. Habituation is often greater for small target and low-frequency radial grating response than for inhibited small target and high frequency grating response. 10. These results substantiate previously proposed lateral inhibition models of the acridid movement detector system.


1989 ◽  
Vol 62 (2) ◽  
pp. 544-557 ◽  
Author(s):  
C. Casanova ◽  
R. D. Freeman ◽  
J. P. Nordmann

1. We have studied response properties of single cells in the striate-recipient zone of the cat's lateral posterior-pulvinar (LP-P) complex. This zone is in the lateral section of the lateral posterior nucleus (LP1). Our purpose was to determine basic response characteristics of these cells and to investigate the possibility that the LP-P complex is a center of integration that is dominated by input from visual cortex. 2. The majority (72%) of cells in the striate-recipient zone respond to drifting sinusoidal gratings with unmodulated discharge. 3. Cells in the LP1 are selective to the orientation of gratings, and tuning functions have a mean bandwidth of 31 degrees. More than one-half of these units are direction-selective. The preferred orientation and the tuning widths for the two eyes are generally well matched. However, a few cells exhibited the interesting property of opposite preferred directions for the two eyes. Orientation tuning for a small group of cells was different for the mean discharge and first harmonic components, suggesting a convergence from different inputs to these cells. 4. Two-thirds of LP1 cells are tuned to low spatial frequencies (less than 0.5 c/deg). The tuning is broad with a mean bandwidth of 2.2 octaves. The remaining one-third of the units are low-pass because they show no attenuation of their responses to low spatial frequencies. Both eyes exhibit the same spatial frequency preference and the same spatial frequency tuning. There is a high correlation between spatial frequency and orientation selectivities. 5. All cells tested are tuned for temporal frequency with a sharp attenuation for low frequencies. The optimal values range between 4 and 8 Hz, and the mean bandwidth is 2.2 octaves. 6. Cells in LP1 are mostly binocular. When monocular, cells are almost always contralaterally driven. Dichoptic presentation of gratings reveals the presence of strong binocular interaction. In almost all cases, these interactions are phase specific. The cell's discharge is facilitated at particular phases and inhibited at phases 180 degrees away. These binocular interactions are orientation dependent. 7. Twenty-five percent of the cells with phase-specific binocular facilitation appear to be monocular when each eye is tested separately. For three cells, we observed a non-phase-specific inhibitory effect of the silent eye. 8. Our findings indicate that LP1 cells form a relatively homogeneous group, suggesting a high degree of integration of multiple cortical inputs.(ABSTRACT TRUNCATED AT 400 WORDS)


By measuring the contrast threshold for gratings of different waveform and spatial frequency, Campbell & Robson suggested in 1968 that there may be ‘channels’ tuned to different spatial frequencies. By using the technique of adapting to a high contrast grating, it was possible to measure the band-pass characteristics of these channels. Similar techniques were used to establish the orientational tuning of the channels. Reasons are put forward why it is advantageous to organize the visual system in this manner.


2005 ◽  
Vol 55 (3) ◽  
pp. 245-258 ◽  
Author(s):  
◽  
◽  
◽  

AbstractFlickering light can cause adverse effects in some humans, as can rhythmic spatial patterns of particular frequencies. We investigated whether birds react to the temporal frequency of standard 100 Hz fluorescent lamps and the spatial frequency of the visual surround in the manner predicted by the human literature, by examining their effects on the preferences, behaviour and plasma corticosterone of European starlings (Sturnus vulgaris). We predicted that high frequency lighting (> 30 kHz) and a relatively low spatial frequency on the walls of their cages (0.1 cycle cm−1) would be less aversive than low frequency lighting (100 Hz) and a relatively high spatial frequency (2.5 cycle cm−1). Birds had strong preferences for both temporal and spatial frequencies. These preferences did not always fit with predictions, although there was evidence that 100 Hz was more stressful than 30 kHz lighting, as birds were less active and basal corticosterone levels were higher under 100 Hz lighting. Our chosen spatial frequencies had no overall significant effect on corticosterone levels. Although there are clearly effects of, and interactions between, the frequency of the light and the visual surround on the behaviour and physiology of birds, the pattern of results is not straightforward.


Sign in / Sign up

Export Citation Format

Share Document