Effects of phosphorus fertiliser and rate of stocking on the seasonal pasture production of perennial ryegrass-subterranean clover pasture

1998 ◽  
Vol 49 (2) ◽  
pp. 233 ◽  
Author(s):  
J. W. D. Cayley ◽  
M. C. Hannah ◽  
G. A. Kearney ◽  
S. G. Clark

The response of pastures based on Lolium perenne L. and Trifolium subterraneum L. to single superphosphate was assessed at Hamilton, Victoria, by measuring the growth of pastures during winter, spring, and summer over 7 years from 1979 to 1987. The seasons were defined by the pattern of pasture production, rather than by calendar months. Winter was the period of constant growth rate following the autumn rain; spring was the period of accelerating growth rate until growth rate changed abruptly following the onset of dry summer weather. Pastures were grazed with sheep at a low, medium, or high grazing pressure, corresponding generally to stocking rates of 10, 14, or 18 sheep/ha. At each level of grazing pressure, single superphosphate was applied at 5 rates from 1979 to 1982; the highest rate, expressed as elemental phosphorus (P), was reduced from 100 to 40 kg/ha during this time. In addition there was an unfertilised treatment. In 1984, fertiliser was applied at 6 rates from 4 to 40 kg P/ha. No fertiliser was applied in the remaining years, including 1983. Pasture production was measured from 1979 to 1982 and from 1985 to 1987. Total pasture dry matter (DM) accumulation per year at the highest stocking rate was less than the other treatments in 4 of the years. Averaged over all years and fertiliser treatments, the annual net production was 10·1, 10·1, and 9·0 t DM/ha (P < 0·05) for plots grazed at low, medium, and high stocking rates, respectively. The amount of fertiliser required to reach a given proportion of maximum yield response did not vary between winter and spring in any year, but the greater potential yield in spring (P < 0 ·001) meant that as more fertiliser was applied, the disparity between pasture grown in winter and pasture grown in spring increased. Differences in this disparity between extreme levels of P ranged from 1·4 t DM/ha in a drought to about 7 t DM/ha in a good season. The implications for managing farms when pastures are fertilised at higher rates than currently practised by district farmers are that systems of animal production with a requirement for plentiful good quality pasture in spring, such as ewes lambing in spring, should be used. The benefit of spring lambing over autumn lambing was supported when the 2 systems were compared over 26 years using the GrassGro decision support system. Well fertilised pasture systems will also allow more scope for conserving pasture as hay or silage, and increase opportunities for diversification in the farming enterprise, such as spring-growing crops.


2002 ◽  
Vol 53 (12) ◽  
pp. 1383
Author(s):  
J. W. D. Cayley ◽  
M. C. Hannah ◽  
G. A. Kearney ◽  
S. G. Clark

The response of pastures based on Lolium perenne L. and Trifolium subterraneum L. to single superphosphate was assessed at Hamilton, Victoria, by measuring the growth of pastures during winter, spring, and summer over 7 years from 1979 to 1987. The seasons were defined by the pattern of pasture production, rather than by calendar months. Winter was the period of constant growth rate following the autumn rain; spring was the period of accelerating growth rate until growth rate changed abruptly following the onset of dry summer weather. Pastures were grazed with sheep at a low, medium, or high grazing pressure, corresponding generally to stocking rates of 10, 14, or 18 sheep/ha. At each level of grazing pressure, single superphosphate was applied at 5 rates from 1979 to 1982; the highest rate, expressed as elemental phosphorus (P), was reduced from 100 to 40 kg/ha during this time. In addition there was an unfertilised treatment. In 1984, fertiliser was applied at 6 rates from 4 to 40 kg P/ha. No fertiliser was applied in the remaining years, including 1983. Pasture production was measured from 1979 to 1982 and from 1985 to 1987. Total pasture dry matter (DM) accumulation per year at the highest stocking rate was less than the other treatments in 4 of the years. Averaged over all years and fertiliser treatments, the annual net production was 10·1, 10·1, and 9·0 t DM/ha (P < 0·05) for plots grazed at low, medium, and high stocking rates, respectively. The amount of fertiliser required to reach a given proportion of maximum yield response did not vary between winter and spring in any year, but the greater potential yield in spring (P < 0 ·001) meant that as more fertiliser was applied, the disparity between pasture grown in winter and pasture grown in spring increased. Differences in this disparity between extreme levels of P ranged from 1·4 t DM/ha in a drought to about 7 t DM/ha in a good season. The implications for managing farms when pastures are fertilised at higher rates than currently practised by district farmers are that systems of animal production with a requirement for plentiful good quality pasture in spring, such as ewes lambing in spring, should be used. The benefit of spring lambing over autumn lambing was supported when the 2 systems were compared over 26 years using the GrassGro decision support system. Well fertilised pasture systems will also allow more scope for conserving pasture as hay or silage, and increase opportunities for diversification in the farming enterprise, such as spring-growing crops.



1995 ◽  
Vol 46 (8) ◽  
pp. 1601 ◽  
Author(s):  
JWD Cayley ◽  
MC Hannah

The response to phosphatic fertilizer of a pasture based on perennial ryegrass, subterranean clover and phalaris was assessed over 4 years. The pasture was established on a previously unfertilized area. Single superphosphate was applied at five rates. In addition there was an unfertilized treatment. The highest rate of fertilizer, expressed as elemental phosphorus (P), was reduced from 100 kg/ha in years 1 and 2 to 60 and 40 kg/ha in years 3 and 4 respectively. Each year total pasture drymatter (DM) production was measured during a 6-month growing season from early winter to late spring under four systems of defoliation: mown monthly (MI), mown every 2 months (M2), mown every 3 months (M3) or set stocked with 1 year old sheep (G). Grazed plots were stocked at 10, 14 or 18 sheep/ha in 3 of the years, and at 8.75, 12.25 or 15.75 sheep/ha during the remaining year. The production of mown pasture generally decreased with increasing frequency of cutting, and was always less than the production of grazed pasture. Mean values for MI, M2, M3 and G were 2.85, 4.35, 5.44 and 6.86 t DM/ha respectively. The absolute and marginal responses to fertilizer (kg DM/kgP) were always greater for the grazed treatments. This suggests that data from mowing trials seriously underestimate the fertilizer response of grazed systems. The amount of fertilizer required to reach a given proportion of potential yield response did not differ between the systems in the first 3 years, but in year 4, more fertilizer was required by the grazed system to reach a given proportion of potential yield (P < 0.01. Strategies for correcting the response curves of the mown treatments are considered.



2001 ◽  
Vol 41 (2) ◽  
pp. 161 ◽  
Author(s):  
H. Lloyd Davies ◽  
I. N. Southey

Border Leicester x Merino ewes joined to Dorset Horn rams were grazed for 3 years on subterranean clover-based pastures established on virgin ground at Bakers Hill, Western Australia, at 3 stocking rates and 2 systems of grazing management (viz. continuous grazing compared with a deferred grazing system which was designed to ensure that pasture availability met the nutritional requirements of breeding ewes at critical phases of their reproductive cycle). Both stocking rate and grazing management affected pasture availability: there was always a greater amount of pasture available on offer under the deferred grazing system. However, this extra pasture rarely increased animal production; the effect of the deferred grazing compared with continuous grazing was inconsequential for ewe liveweight in late pregnancy and for lamb growth rate. The deferred grazing system promoted grass dominance at all stocking rates whereas there was only 24% grass under continuous grazing at the high stocking rate. Stocking rate on some occasions affected ewe liveweight at joining but always affected the prelambing weight. The highest stocking rate on some occasions reduced twinning rate. Stocking rate (particularly in 1966) affected lamb growth rate. The combination of the effect of stocking rate on twinning rate, lamb survival and lamb growth rate resulted in a lower proportion of lambs achieving 30 kg liveweight per lamb marked at higher stocking rates (3-year mean low stocking rate 106% lambs marketed; medium stocking rate 95% and high stocking rate 80%). In 1966, total plasma ketones were lower and plasma glucose (measure of ewe metabolic status) was higher on the deferred system than on the continuously grazed system.



Soil Research ◽  
2001 ◽  
Vol 39 (5) ◽  
pp. 979 ◽  
Author(s):  
R. N. Summers ◽  
M. D. A. Bolland ◽  
M. F. Clarke

Bauxite residue (red mud) is the byproduct from treatment of crushed bauxite with caustic soda to produce alumina. When dried the residue is alkaline and has a high capacity to retain phosphorus (P). The residue is added to pastures on acidic sandy soils to increase the capacity of the soils to retain P so as to reduce leaching of P into waterways and so reduce eutrophication of the waterways. This paper examines how red mud influences the effectiveness of P from single superphosphate for producing subterranean clover (Trifolium subterraneum) dry herbage, in the year of application and in the years after application (residual value). Red mud was applied at 0, 2, 5, 10, 20, and 40 t/ha and the P was applied at 0, 5, 10, 20, 40, 80, and 160 kg P/ha. In the year of application and the year after application of red mud, dry matter yields were doubled on the soil treated with 20 t/ha of red mud compared with the untreated control. Improvements in production were initially greater in the red mud treatments than in the lime treatment (2 t lime/ha). Red mud increased the maximum yield plateau for P applied in current and previous years. When P was applied to freshly applied red mud, more P needed to be applied to produce the same yield as the amount of red mud applied increased. Red mud increased soil pH, and the increases in yield are attributed to removing low soil pH as a constraint to pasture production. This initial need for higher amounts of fertiliser P when increasing amounts of red mud were applied may be due to increased P sorption caused by increased precipitation of applied P when the fertiliser was in close contact with the freshly alkaline red mud. When P was freshly applied to red mud that had been applied to the soil 12 months ago, yield response and P content increased. This was attributed to the reduction in sorption of P due to red mud being neutralised by the soil and because sorption of P already present in the soil reduced the capacity of the red mud to sorb freshly applied fertiliser P. Residues of P in the soil and pH were also increased with application of red mud. In the years after application of red mud and lime, relative to P applied to nil red mud and nil lime treatment, the effectiveness of fertiliser P applied to the red mud and lime treatments increased. This was so as determined using plant yield, P concentration in plant tissue, and soil P test.



2002 ◽  
Vol 42 (2) ◽  
pp. 149 ◽  
Author(s):  
M. D. A. Bolland ◽  
W. J. Cox ◽  
B. J. Codling

Dairy and beef pastures in the high (>800 mm annual average) rainfall areas of south-western Australia, based on subterranean clover (Trifolium subterraneum) and annual ryegrass (Lolium rigidum), grow on acidic to neutral deep (>40 cm) sands, up to 40 cm sand over loam or clay, or where loam or clay occur at the surface. Potassium deficiency is common, particularly for the sandy soils, requiring regular applications of fertiliser potassium for profitable pasture production. A large study was undertaken to assess 6 soil-test procedures, and tissue testing of dried herbage, as predictors of when fertiliser potassium was required for these pastures. The 100 field experiments, each conducted for 1 year, measured dried-herbage production separately for clover and ryegrass in response to applied fertiliser potassium (potassium chloride). Significant (P<0.05) increases in yield to applied potassium (yield response) were obtained in 42 experiments for clover and 6 experiments for ryegrass, indicating that grass roots were more able to access potassium from the soil than clover roots. When percentage of the maximum (relative) yield was related to soil-test potassium values for the top 10 cm of soil, the best relationships were obtained for the exchangeable (1 mol/L NH4Cl) and Colwell (0.5 mol/L NaHCO3-extracted) soil-test procedures for potassium. Both procedures accounted for about 42% of the variation for clover, 15% for ryegrass, and 32% for clover + grass. The Colwell procedure for the top 10 cm of soil is now the standard soil-test method for potassium used in Western Australia. No increases in clover yields to applied potassium were obtained for Colwell potassium at >100 mg/kg soil. There was always a clover-yield increase to applied potassium for Colwell potassium at <30 mg/kg soil. Corresponding potassium concentrations for ryegrass were >50 and <30 mg/kg soil. At potassium concentrations 30–100 mg/kg soil for clover and 30–50 mg/kg soil for ryegrass, the Colwell procedure did not reliably predict yield response, because from nil to large yield responses to applied potassium occurred. The Colwell procedure appears to extract the most labile potassium in the soil, including soluble potassium in soil solution and potassium balancing negative charge sites on soil constituents. In some soils, Colwell potassium was low indicating deficiency, yet plant roots may have accessed potassum deeper in the soil profile. Where the Colwell procedure does not reliably predict soil potassium status, tissue testing may help. The relationship between relative yield and tissue-test potassium varied markedly for different harvests in each year of the experiments, and for different experiments. For clover, the concentration of potassium in dried herbage that was related to 90% of the maximum, potassium non-limiting yield (critical potassium) was at the concentration of about 15 g/kg dried herbage for plants up to 8 weeks old, and at <10 g/kg dried herbage for plants older than 10–12 weeks. For ryegrass, there were insufficient data to provide reliable estimates of critical potassium.



2003 ◽  
Vol 43 (10) ◽  
pp. 1221 ◽  
Author(s):  
M. D. A. Bolland ◽  
J. S. Yeates ◽  
M. F. Clarke

The dry herbage yield increase (response) of subterranean clover (Trifolium subterraneum L.)-based pasture (>85% clover) to applications of different sources of sulfur (S) was compared in 7 field experiments on very sandy soils in the > 650 mm annual average rainfall areas of south-western Australia where S deficiency of clover is common when pastures grow rapidly during spring (August–November). The sources compared were single superphosphate, finely grained and coarsely grained gypsum from deposits in south-western Australia, and elemental S. All sources were broadcast (topdressed) once only onto each plot, 3 weeks after pasture emerged at the start of the first growing season. In each subsequent year, fresh fertiliser-S as single superphosphate was applied 3 weeks after pasture emerged to nil-S plots previously not treated with S since the start of the experiment. This was to determine the residual value of sources applied at the start of the experiment in each subsequent year relative to superphosphate freshly-applied in each subsequent year. In addition, superphosphate was also applied 6, 12 and 16 weeks after emergence of pasture in each year, using nil-S plots not previously treated with S since the start of the experiment. Pasture responses to applied S are usually larger after mid-August, so applying S later may match plant demand increasing the effectiveness of S for pasture production and may also reduce leaching losses of the applied S.At the same site, yield increases to applied S varied greatly, from 0 to 300%, at different harvests in the same or different years. These variations in yield responses to applied S are attributed to the net effect of mineralisation of different amounts of S from soil organic matter, dissolution of S from fertilisers, and different amounts of leaching losses of S from soil by rainfall. Within each year at each site, yield increases were mostly larger in spring (September–November) than in autumn (June–August). In the year of application, single superphosphate was equally or more effective than the other sources. In years when large responses to S occurred, applying single superphosphate later in the year was more effective than applying single superphosphate 3 weeks after pasture emerged (standard practice), so within each year the most recently applied single superphosphate treatment was the most effective S source. All sources generally had negligible residual value, so S needed to be applied each year to ensure S deficiency did not reduce pasture production.



1999 ◽  
Vol 50 (4) ◽  
pp. 547 ◽  
Author(s):  
J. W. D. Cayley ◽  
G. A. Kearney

The effect of 3 successive yearly applications of single superphosphate (SSP) to pastures on bicarbonate- extractable soil phosphorus (Olsen P) was measured. The soil was a duplex derived from basalt and the pastures, based on perennial ryegrass and subterranean clover, were continuously stocked with sheep. Six levels of SSP were compared at 3 stocking rates. The amount of P applied annually varied from 0 to 100 kg/ha. These data were used to create an empirical model which used the current value for Olsen P (Olsen Pn), the amount of P applied as fertiliser that year (fert Pn), and a lower limit for Olsen P for basalt-derived duplex soils (Olsen Plow) to predict the Olsen P for the following year (Olsen Pn+1). The model had the form: Olsen Pn+1 = Olsen P low + afert Pn + b(Olsen Pn – Olsen Plow). Olsen P low was fixed at 3 mg P/kg soil, and the coefficients a and b were 0.0995 and 0.8020. The model accounted for 96.6% of the variance in Olsen Pn+1. This model was tested at the same site at 2 other periods: when fertiliser was withheld for 3 years and again after applications of SSP were resumed. The model was also tested against data from another experiment conducted on a similar soil. The model can estimate the amount of fertiliser required to maintain the P status of the soil and predicts that to increase Olsen P by 1 unit in the following year it is necessary to apply 10 kg P/ha in excess of soil maintenance requirement.



1975 ◽  
Vol 15 (75) ◽  
pp. 531 ◽  
Author(s):  
JA Firth ◽  
TR Evans ◽  
WW Bryan

Comparative budgeting techniques have been applied to the results of a grazing experiment in which the effects of different stocking rates and maintenance levels of fertilizer were examined. The experiment was carried out on grass/legume pastures in the coastal lowlands of south-east Queensland. The economic appraisal is of an investment project based on fattening purchased store cattle. Extrapolative trends have been fitted to the pattern of pasture production emerging from the first six years of an experimental period, to enable the life of the project to extend over a twenty year period. The recent sharp increases in the price of superphosphate and potassium fertilizer have had a marked effect on intensive beef production on improved pastures which is illustrated in this analysis. Pasture maintenance costs (principally fertilizer inputs) appear as the largest component of annual operating costs in most systems. The budgets indicate that at July 1973 fertilizer prices the positive internal rates of return of the various grazing systems range from 4.2 per cent to 13.2 per cent at a beef price of $0.77 kg-1 dressed weight. The highest return was obtained from a system in which 250 kg ha-1 single superphosphate and 63 kg ha-1 potassium chloride were applied annually and at a stocking rate of 1.65 beasts ha-1. These returns are reduced to a high of 10.4 per cent when 1974 fertilizer prices are incorporated. At beef prices of $0.66 kg-1, all systems but one were found to have negative internal rates of return. Assuming beef prices of $0.88 kg-1, most treatments were associated with positive internal rates of return, generally well above 10 per cent, ranging up to 20 per cent. Most of the calculations, by excluding land values from the budgeted cash flows, assume that unimproved land is already available at no charge to the investor. A series of supplementary budgets indicate the level of returns that could be expected if unimproved land commanded values of up to $200 ha-1.



1992 ◽  
Vol 32 (8) ◽  
pp. 1077 ◽  
Author(s):  
BH Paynter

Burr medic (Medicago polymorpha) and yellow serradella (Ornithopus compressus) were compared with subterranean clover (Trifolium subterraneum) in their response to freshly topdressed phosphate in the low rainfall wheatbelt of Western Australia. Species were compared on the amount of applied phosphorus (P) required for 90% maximum yield and the ratio of their curvature coefficients from the Mitscherlich relationship between P applied and absolute yield. On marginally acidic, medium-textured soils, burr medic had a higher external shoot requirement for applied P than subterranean clover. Relative differences between the species were affected by season, initial concentration of bicarbonate-extractable P in the soil (0-10 cm), and timing of plant harvest during the growing season. Burr medic generally achieved a higher absolute maximum yield at each harvest, a larger absolute yield response, and a larger percentage response to applied P than subterranean clover. There was no difference between burr medic and subterranean clover with respect to the internal efficiency of P use for shoot production. For seed production, the external requirements of burr medic and subterranean clover for applied P were similar according to the criterion of P required at 90% maximum yield, but burr medic had a higher requirement if curvature coefficient was the criterion for comparison. Burr medic also had a higher internal efficiency of P use for seed production than subterranean clover. On an acidic, light-textured soil, yellow serradella had a lower requirement for applied P than subterranean clover, according to both criteria for all harvests in 2 separate years.



2003 ◽  
Vol 43 (9) ◽  
pp. 1117
Author(s):  
M. D. A. Bolland ◽  
J. S. Yeates ◽  
M. F. Clarke

To reduce leaching of phosphorus (P) from fertilised pastures to shallow estuaries in the high rainfall (>800 mm annual average) areas of south-western Australia, and to supply extra sulfur (S) for subterranean clover (Trifolium subterraneum L.) in pasture, 'coastal superphosphate' was developed as a possible alternative P and S fertiliser to single superphosphate. Coastal superphosphate is made by adding phosphate rock and elemental S to single superphosphate as it comes out of the den before granulation. It has about 3 times more sulfur (S) and one-third the water-soluble P content than single superphosphate. Four long-term (5-year) field experiments were conducted in south-western Australia to compare the effectiveness of single and coastal superphosphate as S fertilisers for subterranean clover pasture grown on very sandy soils that are frequently S deficient after July each year due to leaching of S from soil. Seven different amounts of S were applied as fertiliser annually. Fertiliser effectiveness was assessed from clover herbage yield and S concentration in dried herbage. Fertiliser nitrogen was not applied in these experiments as this was the normal practice for pastures in the region when the research was conducted.Both coastal and single superphosphates were equally effective per unit of applied S for producing dried clover herbage and increasing S concentration in herbage. Previous research on very sandy soils in the region had shown that coastal superphosphate was equally or more effective per unit of applied P for production of subterranean clover herbage. It is, therefore, concluded that coastal superphosphate is a suitable alternative S and P fertiliser for clover pastures on very sandy soils in the region. The concentration of S in dried clover herbage that was related to 90% of the maximum yield (critical S) was about 0.20–0.35% S during August (before flowering) and 0.15–0.20% S during October (after flowering).



Sign in / Sign up

Export Citation Format

Share Document