Effects of soils, fertilizers and stocking rates on pastures and beef production on the Wallum of South-East Queensland. 4. Budgetary appraisals of fertilizer and stocking rates

1975 ◽  
Vol 15 (75) ◽  
pp. 531 ◽  
Author(s):  
JA Firth ◽  
TR Evans ◽  
WW Bryan

Comparative budgeting techniques have been applied to the results of a grazing experiment in which the effects of different stocking rates and maintenance levels of fertilizer were examined. The experiment was carried out on grass/legume pastures in the coastal lowlands of south-east Queensland. The economic appraisal is of an investment project based on fattening purchased store cattle. Extrapolative trends have been fitted to the pattern of pasture production emerging from the first six years of an experimental period, to enable the life of the project to extend over a twenty year period. The recent sharp increases in the price of superphosphate and potassium fertilizer have had a marked effect on intensive beef production on improved pastures which is illustrated in this analysis. Pasture maintenance costs (principally fertilizer inputs) appear as the largest component of annual operating costs in most systems. The budgets indicate that at July 1973 fertilizer prices the positive internal rates of return of the various grazing systems range from 4.2 per cent to 13.2 per cent at a beef price of $0.77 kg-1 dressed weight. The highest return was obtained from a system in which 250 kg ha-1 single superphosphate and 63 kg ha-1 potassium chloride were applied annually and at a stocking rate of 1.65 beasts ha-1. These returns are reduced to a high of 10.4 per cent when 1974 fertilizer prices are incorporated. At beef prices of $0.66 kg-1, all systems but one were found to have negative internal rates of return. Assuming beef prices of $0.88 kg-1, most treatments were associated with positive internal rates of return, generally well above 10 per cent, ranging up to 20 per cent. Most of the calculations, by excluding land values from the budgeted cash flows, assume that unimproved land is already available at no charge to the investor. A series of supplementary budgets indicate the level of returns that could be expected if unimproved land commanded values of up to $200 ha-1.

Author(s):  
S.T. Morris ◽  
A.F. Mcfrae

This paper reports and discusses the results of 4 years of trials (1985-1988) involving 2 farmlets, one receiving 3 nitrogen applications (50 kg /ha) in autumn, winter and spring (+N) and one receiving no N fertiliser (-N). Stocking rags were 3.3 animals/ha on -N farmlet and 4.3 animals/ha on the +N farmlet for the first 3 years, with the objective being to utilise the extra N-boosted grass with extra animals/ha but not to sacrifice individual animal performance. In the fourth year the stocking rates were kept the same on each farmlet (3.3 animals/ha) in an endeavour to utilise the extra grass grown on the +N farmlet by way of increased per head performance. In 2 of the 3 years (1985 and 1987) where the +N farmlet supported the higher stocking rate, liveweight gain (LWG) did not differ between animals. In 1986 the extra animals on the -l-N farmlet had a lower LWG, whereas in 1988 the LWGs were similar for the 2 farmlets stocked at the same rate. The apparent DM responses (kg DM/kg N applied) ranged from 2 to 12. The rates of N fertiliser used in this trial do not appear to result in economic increases in pasture production for the beef production system reported here. Nitrogen fertiliser did not reduce the clover content of pastures rotationally grazed by beef cattle. Keywords beef production, nitrogen fertiliser, pasture composition, livewieght gain, economics.


1998 ◽  
Vol 49 (2) ◽  
pp. 233 ◽  
Author(s):  
J. W. D. Cayley ◽  
M. C. Hannah ◽  
G. A. Kearney ◽  
S. G. Clark

The response of pastures based on Lolium perenne L. and Trifolium subterraneum L. to single superphosphate was assessed at Hamilton, Victoria, by measuring the growth of pastures during winter, spring, and summer over 7 years from 1979 to 1987. The seasons were defined by the pattern of pasture production, rather than by calendar months. Winter was the period of constant growth rate following the autumn rain; spring was the period of accelerating growth rate until growth rate changed abruptly following the onset of dry summer weather. Pastures were grazed with sheep at a low, medium, or high grazing pressure, corresponding generally to stocking rates of 10, 14, or 18 sheep/ha. At each level of grazing pressure, single superphosphate was applied at 5 rates from 1979 to 1982; the highest rate, expressed as elemental phosphorus (P), was reduced from 100 to 40 kg/ha during this time. In addition there was an unfertilised treatment. In 1984, fertiliser was applied at 6 rates from 4 to 40 kg P/ha. No fertiliser was applied in the remaining years, including 1983. Pasture production was measured from 1979 to 1982 and from 1985 to 1987. Total pasture dry matter (DM) accumulation per year at the highest stocking rate was less than the other treatments in 4 of the years. Averaged over all years and fertiliser treatments, the annual net production was 10·1, 10·1, and 9·0 t DM/ha (P < 0·05) for plots grazed at low, medium, and high stocking rates, respectively. The amount of fertiliser required to reach a given proportion of maximum yield response did not vary between winter and spring in any year, but the greater potential yield in spring (P < 0 ·001) meant that as more fertiliser was applied, the disparity between pasture grown in winter and pasture grown in spring increased. Differences in this disparity between extreme levels of P ranged from 1·4 t DM/ha in a drought to about 7 t DM/ha in a good season. The implications for managing farms when pastures are fertilised at higher rates than currently practised by district farmers are that systems of animal production with a requirement for plentiful good quality pasture in spring, such as ewes lambing in spring, should be used. The benefit of spring lambing over autumn lambing was supported when the 2 systems were compared over 26 years using the GrassGro decision support system. Well fertilised pasture systems will also allow more scope for conserving pasture as hay or silage, and increase opportunities for diversification in the farming enterprise, such as spring-growing crops.


Author(s):  
A.G. Taylor

In a five-year trial, pasture and beef production of a traditional beef system using 6- t o 7-month-old Angus weaner steers and a dairy beef system using 3- to 4-month-old Friesian weaner steers were compared at three stocking rates.


2002 ◽  
Vol 53 (12) ◽  
pp. 1383
Author(s):  
J. W. D. Cayley ◽  
M. C. Hannah ◽  
G. A. Kearney ◽  
S. G. Clark

The response of pastures based on Lolium perenne L. and Trifolium subterraneum L. to single superphosphate was assessed at Hamilton, Victoria, by measuring the growth of pastures during winter, spring, and summer over 7 years from 1979 to 1987. The seasons were defined by the pattern of pasture production, rather than by calendar months. Winter was the period of constant growth rate following the autumn rain; spring was the period of accelerating growth rate until growth rate changed abruptly following the onset of dry summer weather. Pastures were grazed with sheep at a low, medium, or high grazing pressure, corresponding generally to stocking rates of 10, 14, or 18 sheep/ha. At each level of grazing pressure, single superphosphate was applied at 5 rates from 1979 to 1982; the highest rate, expressed as elemental phosphorus (P), was reduced from 100 to 40 kg/ha during this time. In addition there was an unfertilised treatment. In 1984, fertiliser was applied at 6 rates from 4 to 40 kg P/ha. No fertiliser was applied in the remaining years, including 1983. Pasture production was measured from 1979 to 1982 and from 1985 to 1987. Total pasture dry matter (DM) accumulation per year at the highest stocking rate was less than the other treatments in 4 of the years. Averaged over all years and fertiliser treatments, the annual net production was 10·1, 10·1, and 9·0 t DM/ha (P < 0·05) for plots grazed at low, medium, and high stocking rates, respectively. The amount of fertiliser required to reach a given proportion of maximum yield response did not vary between winter and spring in any year, but the greater potential yield in spring (P < 0 ·001) meant that as more fertiliser was applied, the disparity between pasture grown in winter and pasture grown in spring increased. Differences in this disparity between extreme levels of P ranged from 1·4 t DM/ha in a drought to about 7 t DM/ha in a good season. The implications for managing farms when pastures are fertilised at higher rates than currently practised by district farmers are that systems of animal production with a requirement for plentiful good quality pasture in spring, such as ewes lambing in spring, should be used. The benefit of spring lambing over autumn lambing was supported when the 2 systems were compared over 26 years using the GrassGro decision support system. Well fertilised pasture systems will also allow more scope for conserving pasture as hay or silage, and increase opportunities for diversification in the farming enterprise, such as spring-growing crops.


Author(s):  
Graeme Ogle ◽  
Philip Tither

Dairy beef enterprises are an intensification option for traditional sheep and beef businesses. Intensification largely refers to lifting soil fertility, the establishment of internal fencing and associated water supply, so that forage can be allocated with increasing precision. This precision enables higher stocking rates as a result of increasing pasture production, pasture quality, and intake leading to greater production of beef. Two beef finishing systems were compared; one a traditional system and the other a Technosystem. Using average parameter analyses, intensification was shown to pay at market returns of $2.50/kg of carcass weight under the production assumptions we used. The Technosystem showed significant returns on investment lifting the return on total capital invested in the farm business from 4.9% in a traditional system to 8%. We used two software programs; RANGEPACK HerdEcon and Stockpol™ to assess the risks a farmer would face when converting to a Technosystem. The two risks assessed were the variable climate of the East Coast and market prices. While these parameters vary considerably, the probability of doing better than the traditional system is high (84.7%). This declined rapidly if final stocking rates were less than 4 bulls per hectare with the probability of doing better reducing to 58% at 3.5 bulls per hectare. We also showed that the variability in cash surpluses is reduced by development with the coeffiecient of variation for the traditional system at 126% compared with the Technosystem of 95%. Variability does have a moderate effect on reducing overall profitability (13.4%), most of which (9.3%) is caused by markets rather than climate. Our conclusion is that beef intensification provides a reliable means of increasing net worth and cash surpluses. Keywords: beef intensification, bull finishing, climatic variability, financial analysis, price variability, risk, Technosystems


As explained in the foregoing chapter, once the relevant cash outflows and inflows associated with a foreign direct investment project are estimated so as to calculate the net cash flows, the desirability of the investment project should then be determined in terms of its economic profitability. Therefore, in this chapter the methods widely used in evaluating investment projects are discussed and their advantages as well as shortcomings are highlighted. Later in the chapter, evaluating foreign direct investment projects from the viewpoint of the parent company is elaborated in terms of profit and/or income transferred to the home country. The same investment evaluation techniques were applied to the net cash flows transferred to the home country of the parent company. The possible income and/or dividends to be remitted to the home country of a parent company are identified and discussed so as to reflect the viewpoints of investing parent companies when planning foreign direct investments. This two-level evaluation approach is generally followed in practice to make sure that direct investments are profitable at both host and home country levels, since an investment project that is not profitable at host country level would not be profitable at home country level either or a project that is profitable at host country level may not be profitable at home country level.


1978 ◽  
Vol 29 (1) ◽  
pp. 103 ◽  
Author(s):  
LA Edye ◽  
WT Williams ◽  
WH Winter

The relationship between stocking rate and liveweight change per animal was examined over a period of 3 years for two continuously grazed pastures, one of Brachiaria and the other consisting of guinea grass with Endeavour stylo and Siratro. On an annual basis there was no significant effect of stocking rate over the last 2 years, but on a seasonal basis there were highly significant effects in all seasons. In the dry seasons, animal gain rose as the stocking rate fell, but in the last two wet seasons gains fell with the lower stocking rates. On an annual basis the two effects cancelled out. Response surfaces for gain versus pasture yield and stocking rate were curvilinear (quadratic) during the wet season and linear during the dry. Optimum stocking rates (for maximum gain per hectare) were determined for the wet and dry seasons; the rate was greatly affected by the yield of green material during the dry season but less so during the wet. The possible causes of this reversed wetseason effect are discussed.


2003 ◽  
Vol 43 (10) ◽  
pp. 1221 ◽  
Author(s):  
M. D. A. Bolland ◽  
J. S. Yeates ◽  
M. F. Clarke

The dry herbage yield increase (response) of subterranean clover (Trifolium subterraneum L.)-based pasture (>85% clover) to applications of different sources of sulfur (S) was compared in 7 field experiments on very sandy soils in the > 650 mm annual average rainfall areas of south-western Australia where S deficiency of clover is common when pastures grow rapidly during spring (August–November). The sources compared were single superphosphate, finely grained and coarsely grained gypsum from deposits in south-western Australia, and elemental S. All sources were broadcast (topdressed) once only onto each plot, 3 weeks after pasture emerged at the start of the first growing season. In each subsequent year, fresh fertiliser-S as single superphosphate was applied 3 weeks after pasture emerged to nil-S plots previously not treated with S since the start of the experiment. This was to determine the residual value of sources applied at the start of the experiment in each subsequent year relative to superphosphate freshly-applied in each subsequent year. In addition, superphosphate was also applied 6, 12 and 16 weeks after emergence of pasture in each year, using nil-S plots not previously treated with S since the start of the experiment. Pasture responses to applied S are usually larger after mid-August, so applying S later may match plant demand increasing the effectiveness of S for pasture production and may also reduce leaching losses of the applied S.At the same site, yield increases to applied S varied greatly, from 0 to 300%, at different harvests in the same or different years. These variations in yield responses to applied S are attributed to the net effect of mineralisation of different amounts of S from soil organic matter, dissolution of S from fertilisers, and different amounts of leaching losses of S from soil by rainfall. Within each year at each site, yield increases were mostly larger in spring (September–November) than in autumn (June–August). In the year of application, single superphosphate was equally or more effective than the other sources. In years when large responses to S occurred, applying single superphosphate later in the year was more effective than applying single superphosphate 3 weeks after pasture emerged (standard practice), so within each year the most recently applied single superphosphate treatment was the most effective S source. All sources generally had negligible residual value, so S needed to be applied each year to ensure S deficiency did not reduce pasture production.


1978 ◽  
Vol 18 (95) ◽  
pp. 788 ◽  
Author(s):  
NH Shaw

Changes in the yield, botanical composition and chemical composition of a native pasture (Heteropogon contortus dominant) oversown with S. humilis (T.S.) were measured in a grazing experiment from 1966 to 1973. The 24 treatments were factorial combinations of two sowing methods for T.S. (ground sowing into spaced cultivated strips, or aerial sowing), three levels of molybdenized superphosphate (F0 = nil ; F1 = 125 kg ha-1 annually; F2 = 250 kg ha-1 annually plus an extra 250 kg ha-1 initially) and four stocking rates. Stocking rates were gradually increased during the experiment and for the last three years overlapping ranges were used for the three fertilizer levels; the overall range was then from 0.55 to 1.65 beasts ha 1 T.S. establishment by ground sowing was much more reliable than from aerial sowing, giving twice the average percentage frequency, and this proportion was maintained over years. High fertilizer improved establishment and the best legume stands were in the high fertilizer high stocking rate treatments. Total presentation yield of pasture was increased by fertilizer and reduced by high stocking rates. Over the last two years the means for March, adjusted by regression to the overall average stocking rate of 0.98 beasts ha-1, were 31 20,4020 and 5370 kg ha-1 for F0, F1 and F2 respectively, but these yields were reduced by ca 25 per cent for an increase of 0.5 beasts ha-1. H. contortus remained dominant and its mean contribution to total yield increased from 48 per cent in 1969 to 67 per cent in 1973. This proportion was reduced by 12.8 per cent over the range from 0.55 to 1.65 beasts ha-1, but high fertilizer had the opposite effect so that differences between the extremes low stocked F0 and high stocked F2 were small. The DM percentage yield of T.S. was strongly increased by fertilizer, and, most importantly, also by high stocking rates in the presence of fertilizer. Values for F0 treatments remained below 10 per cent, but in the final year values for F1 and F2 at the highest stocking rates were 36 and 27 per cent, respectively. Despite these large changes in T.S., there was overall stability of botanical composition. Phosphorus and nitrogen concentrations in T.S. and H. contortus were increased by superphosphate but there was an overall decline in potassium concentration. Soil phosphorus levels were greatly increased


Sign in / Sign up

Export Citation Format

Share Document