CHANGES TO GAS ACCESS LEGISLATION—POLICY RATIONALE AND IMPLICATIONS FOR INDUSTRY

2007 ◽  
Vol 47 (1) ◽  
pp. 377
Author(s):  
M.L. Carkeet

The introduction of a national gas access regime has coincided with a rapid expansion in the Australian market for gas transportation services. The threat of regulation and the approach of regulators, however, have influenced both the configuration of pipelines and the nature of transportation contracts. The recent introduction of reforms to the National Third Party Access Regime for Natural Gas Pipelines (Gas Access Regime), and to part IIIA of the Trade Practices Act 1974 (Cth), has the effect of introducing part but not all of the reforms recommended by the Council of Australian Governments’ Independent Review of Energy Market Directions, and the Productivity Commission’s Review of the Gas Access Regime. The principal amendments, relating to the insertion of an objects clause and the introduction of regulatory holidays for certain greenfield projects are also likely to influence the configuration of pipelines and the nature of pipeline contracts. These amendments are precursors to a major restatement of National Gas Access legislation that will, if enacted, have the effect of creating greater uniformity between the National Electricity Law and the regulatory environment that will apply to gas, but, will also open up the opportunity for pipeline owners and operators to submit to a lighter form of regulation.

2006 ◽  
Vol 110 ◽  
pp. 123-132 ◽  
Author(s):  
Jae Young Nam ◽  
S.H. Choi ◽  
Jae Boong Choi ◽  
Young Jin Kim

Even though an excavation is not under the direct control of the utility operators, it is the main cause of third-party damage on the underground natural gas pipelines. Since the damage due to third-party excavation may lead to horrible consequences, preventative techniques that can reduce the third-party damage are needed. The purpose of this paper is to introduce an on-line monitoring system using accelerometer to detect a propagating acoustic pressure pulse that is produced from the third-party damage. Also, in order to verify this system, the corresponding field tests were performed considering many third-party damage sources(breaker, hammer drilling, etc.) and signal transmission ratio of each source. From the tests, signals developed by the third-party damage sources were successfully detected with the digital filter, which can distinguish external noises at the distance of 13km. Therefore, it is expected that the system can be used as a useful tool for the third-party damage monitoring of underground natural gas pipelines


Author(s):  
Toby Fore ◽  
Stefan Klein ◽  
Chris Yoxall ◽  
Stan Cone

Managing the threat of Stress Corrosion Cracking (SCC) in natural gas pipelines continues to be an area of focus for many operating companies with potentially susceptible pipelines. This paper describes the validation process of the high-resolution Electro-Magnetic Acoustical Transducer (EMAT) In-Line Inspection (ILI) technology for detection of SCC prior to scheduled pressure tests of inspected line pipe valve sections. The validation of the EMAT technology covered the application of high-resolution EMAT ILI and determining the Probability Of Detection (POD) and Identification (POI). The ILI verification process is in accordance to a API 1163 Level 3 validation. It is described in detail for 30″ and 36″ pipeline segments. Both segments are known to have an SCC history. Correlation of EMAT ILI calls to manual non-destructive measurements and destructively tested SCC samples lead to a comprehensive understanding of the capabilities of the EMAT technology and the associated process for managing the SCC threat. Based on the data gathered, the dimensional tool tolerances in terms of length and depth are derived.


Sign in / Sign up

Export Citation Format

Share Document