MAZ depth-velocity modelling and imaging with azimuthal anisotropy

2010 ◽  
Vol 50 (2) ◽  
pp. 723
Author(s):  
Sergey Birdus ◽  
Erika Angerer ◽  
Iftikhar Abassi

Processing of multi and wide-azimuth seismic data faces some new challenges, and one of them is depth-velocity modelling and imaging with azimuthal velocity anisotropy. Analysis of multi-azimuth data very often reveals noticeable fluctuations in moveout between different acquisition directions. They can be caused by several factors: real azimuthal interval velocity anisotropy associated with quasi-vertical fractures or present day stress field within the sediments; short-wavelength velocity heterogeneities in the overburden; TTI (or VTI) anisotropy in the overburden; or, random distortions due to noise, multiples, irregularities in the acquisition geometry, etcetera. In order to build a velocity model for multi-azimuth pre-stack depth migration (MAZ PSDM) taking into account observed azimuthal anisotropy, we need to recognise, separate and estimate all the effects listed above during iterative depth-velocity modelling. Analysis of seismic data from a full azimuth 3D seismic land survey revealed the presence of strong spatially variable azimuthal velocity anisotropy that had to be taken into consideration. Using real data examples we discuss major steps in depth processing workflow that took such anisotropy into account: residual moveout estimation in azimuth sectors; separation of different effects causing apparent azimuthal anisotropy (see A–D above); iterative depth-velocity modelling with azimuthal anisotropy; and, subsequent MAZ anisotropic PSDM. The presented workflow solved problems with azimuthal anisotropy in our multi-azimuth dataset. Some of the lessons learned during this MAZ project are relevant to every standard narrow azimuth seismic survey recorded in complex geological settings.

Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE269-VE280 ◽  
Author(s):  
Priyank Jaiswal ◽  
Colin A. Zelt

Imaging 2D multichannel land seismic data can be accomplished effectively by a combination of traveltime inversion and prestack depth migration (PSDM), referred to as unified imaging. Unified imaging begins by inverting the direct-arrival times to estimate a velocity model that is used in static corrections and stacking velocity analysis. The interval velocity model (from stacking velocities) is used for PSDM. The stacked data and the PSDM image are interpreted for common horizons, and the corresponding wide-aperture reflections are identified in the shot gathers. Using the interval velocity model, the stack interpretations are inverted as zero-offset reflections to constrain the corresponding interfaces in depth; the interval velocity model remains stationary. We define a coefficient of congruence [Formula: see text] that measures the discrepancy between horizons from the PSDM image andtheir counterparts from the zero-offset inversion. A value of unity for [Formula: see text] implies that the interpreted and inverted horizons are consistent to within the interpretational uncertainties, and the unified imaging is said to have converged. For [Formula: see text] greater than unity, the interval velocity model and the horizon depths are updated by jointly inverting the direct arrivals with the zero-offset and wide-aperture reflections. The updated interval velocity model is used again for both PSDM and a zero-offset inversion. Interpretations of the new PSDM image are the updated horizon depths. The unified imaging is applied to seismic data from the Naga Thrust and Fold Belt in India. Wide-aperture and zero-offset data from three geologically significant horizons are used. Three runs of joint inversion and PSDM are required in a cyclic manner for [Formula: see text] to converge to unity. A joint interpretation of the final velocity model and depth image reveals the presence of a triangle zone that could be promising for exploration.


2014 ◽  
Vol 69 (6) ◽  
Author(s):  
Sudra Irawan ◽  
Sismanto Sismanto ◽  
Adang Sukmatiawan

Seismic data processing is one of the three stages in the seismic method that has an important role in the exploration of oil and gas. Without good data processing, it is impossible to get seismic image cross section for good interpretation. A research using seismic data processing was done to update the velocity model by horizon based tomography method in SBI Field, North West Java Basin. This method reduces error of seismic wave travel time through the analyzed horizon because the existence velocity of high lateral variation in research area. There are three parameters used to determine the accuracy of the resulting interval velocity model, namely, flat depth gathers, semblance residual moveout that coincides with the axis zero residual moveout, and the correspondence between image depth (horizon) with wells marker  (well seismic tie). Pre Stack Depth Migration (PSDM) form interval velocity model and updating using horizon-based tomography method gives better imaging of under-surfaced structure results than PSDM before using tomography. There are three faults found in the research area, two normal faults have southwest-northeast strike and the other has northwest-southeast strike. The thickness of reservoir in SBI field, North West Java Basin, is predicted between 71 to 175 meters and the hydrocarbon (oil) reserve is predicted about  with 22.6% porosity and 70.7% water saturation. 


Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. U63-U72 ◽  
Author(s):  
Raanan Dafni ◽  
Moshe Reshef

We developed a nonconventional approach to interval velocity analysis. The motivation for this approach is based on the argument that when the subsurface structure is complex, velocity error cannot be related to a single parameter. The suggested analysis uses multiparameter common image gathers (MPCIGs), generated by standard prestack depth migration. The parameterization of these multiparameter gathers is directly related to the structural characteristics of the subsurface image points. The undesirable summation, which is usually involved in the generation of conventional common image gathers, is avoided. During the velocity analysis procedure, depth slices taken out of the calculated MPCIGs are examined. Each depth slice contains all seismic data that were migrated into a single image point associated with the specific depth slice. When the MPCIGs are generated with the correct velocity function, each depth slice holds all structural information associated with the corresponding image point. Through detailed analysis of 2D synthetic and real data examples, the influence of migration velocity errors on the accuracy of the migrated multiparameter gathers is demonstrated. A Kirchhoff-based algorithm is used for the migration along with a layer-stripping method, relying on velocity scans, for the analysis. A velocity correctness criterion was also verified, along with some suggestions on the practical usage of the method.


Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1782-1791 ◽  
Author(s):  
M. Graziella Kirtland Grech ◽  
Don C. Lawton ◽  
Scott Cheadle

We have developed an anisotropic prestack depth migration code that can migrate either vertical seismic profile (VSP) or surface seismic data. We use this migration code in a new method for integrated VSP and surface seismic depth imaging. Instead of splicing the VSP image into the section derived from surface seismic data, we use the same migration algorithm and a single velocity model to migrate both data sets to a common output grid. We then scale and sum the two images to yield one integrated depth‐migrated section. After testing this method on synthetic surface seismic and VSP data, we applied it to field data from a 2D surface seismic line and a multioffset VSP from the Rocky Mountain Foothills of southern Alberta, Canada. Our results show that the resulting integrated image exhibits significant improvement over that obtained from (a) the migration of either data set alone or (b) the conventional splicing approach. The integrated image uses the broader frequency bandwidth of the VSP data to provide higher vertical resolution than the migration of the surface seismic data. The integrated image also shows enhanced structural detail, since no part of the surface seismic section is eliminated, and good event continuity through the use of a single migration–velocity model, obtained by an integrated interpretation of borehole and surface seismic data. This enhanced migrated image enabled us to perform a more robust interpretation with good well ties.


2019 ◽  
Vol 38 (4) ◽  
pp. 268-273
Author(s):  
Maheswara Phani ◽  
Sushobhan Dutta ◽  
Kondal Reddy ◽  
Sreedurga Somasundaram

Raageshwari Deep Gas (RDG) Field is situated in the southern part of the Barmer Basin in Rajasthan, India, at a depth of 3000 m. With both clastic and volcanic lithologies, the main reservoirs are tight, and hydraulic fracturing is required to enhance productivity, especially to improve permeability through interaction of induced fractures with natural fractures. Therefore, optimal development of the RDG Field reservoirs requires characterization of faults and natural fractures. To address this challenge, a wide-azimuth 3D seismic data set over the RDG Field was processed to sharply define faults and capture anisotropy related to open natural fractures. Anisotropy was indicated by the characteristic sinusoidal nature of gather reflection events processed using conventional tilted transverse imaging (TTI); accordingly, we used orthorhombic imaging to correct for these, to quantify fracture-related anisotropy, and to yield a more correct subsurface image. During prestack depth migration (PSDM) processing of the RDG data, TTI and orthorhombic velocity modeling was done with azimuthal sectoring of reflection arrivals. The resultant PSDM data using this velocity model show substantial improvement in image quality and vertical resolution at the reservoir level compared to vintage seismic data. The improved data quality enabled analysis of specialized seismic attributes like curvature and thinned fault likelihood for more reliable characterization of faults and fractures. These attributes delineate the location and distribution of probable fracture networks within the volcanic reservoirs. Interpreted subtle faults, associated with fracture zones, were validated with microseismic, production, and image log data.


Geophysics ◽  
1996 ◽  
Vol 61 (6) ◽  
pp. 1846-1858 ◽  
Author(s):  
Claudio Bagaini ◽  
Umberto Spagnolini

Continuation to zero offset [better known as dip moveout (DMO)] is a standard tool for seismic data processing. In this paper, the concept of DMO is extended by introducing a set of operators: the continuation operators. These operators, which are implemented in integral form with a defined amplitude distribution, perform the mapping between common shot or common offset gathers for a given velocity model. The application of the shot continuation operator for dip‐independent velocity analysis allows a direct implementation in the acquisition domain by exploiting the comparison between real data and data continued in the shot domain. Shot and offset continuation allow the restoration of missing shot or missing offset by using a velocity model provided by common shot velocity analysis or another dip‐independent velocity analysis method.


2017 ◽  
Vol 5 (3) ◽  
pp. SJ81-SJ90 ◽  
Author(s):  
Kainan Wang ◽  
Jesse Lomask ◽  
Felix Segovia

Well-log-to-seismic tying is a key step in many interpretation workflows for oil and gas exploration. Synthetic seismic traces from the wells are often manually tied to seismic data; this process can be very time consuming and, in some cases, inaccurate. Automatic methods, such as dynamic time warping (DTW), can match synthetic traces to seismic data. Although these methods are extremely fast, they tend to create interval velocities that are not geologically realistic. We have described the modification of DTW to create a blocked dynamic warping (BDW) method. BDW generates an automatic, optimal well tie that honors geologically consistent velocity constraints. Consequently, it results in updated velocities that are more realistic than other methods. BDW constrains the updated velocity to be constant or linearly variable inside each geologic layer. With an optimal correlation between synthetic seismograms and surface seismic data, this algorithm returns an automatically updated time-depth curve and an updated interval velocity model that still retains the original geologic velocity boundaries. In other words, the algorithm finds the optimal solution for tying the synthetic to the seismic data while restricting the interval velocity changes to coincide with the initial input blocking. We have determined the application of the BDW technique on a synthetic data example and field data set.


Geophysics ◽  
2011 ◽  
Vol 76 (4) ◽  
pp. S157-S164 ◽  
Author(s):  
Robert Sun ◽  
George A. McMechan

We have extended prestack parsimonious Kirchhoff depth migration for 2D, two-component, reflected elastic seismic data for a P-wave source recorded at the earth’s surface. First, we separated the P-to-P reflected (PP-) waves and P-to-S converted (PS-) waves in an elastic common-source gather into P-wave and S-wave seismograms. Next, we estimated source-ray parameters (source p values) and receiver-ray parameters (receiver p values) for the peaks and troughs above a threshold amplitude in separated P- and S-wavefields. For each PP and PS reflection, we traced (1) a source ray in the P-velocity model in the direction of the emitted ray angle (determined by the source p value) and (2) a receiver ray in the P- or S-velocity model back in the direction of the emergent PP- or PS-wave ray angle (determined by the PP- or PS-wave receiver p value), respectively. The image-point position was adjusted from the intersection of the source and receiver rays to the point where the sum of the source time and receiver-ray time equaled the two-way traveltime. The orientation of the reflector surface was determined to satisfy Snell’s law at the intersection point. The amplitude of a P-wave (or an S-wave) was distributed over the first Fresnel zone along the reflector surface in the P- (or S-) image. Stacking over all P-images of the PP-wave common-source gathers gave the stacked P-image, and stacking over all S-images of the PS-wave common-source gathers gave the stacked S-image. Synthetic examples showed acceptable migration quality; however, the images were less complete than those produced by scalar reverse-time migration (RTM). The computing time for the 2D examples used was about 1/30 of that for scalar RTM of the same data.


Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. S105-S111 ◽  
Author(s):  
Sheng Xu ◽  
Feng Chen ◽  
Bing Tang ◽  
Gilles Lambare

When using seismic data to image complex structures, the reverse time migration (RTM) algorithm generally provides the best results when the velocity model is accurate. With an inexact model, moveouts appear in common image gathers (CIGs), which are either in the surface offset domain or in subsurface angle domain; thus, the stacked image is not well focused. In extended image gathers, the strongest energy of a seismic event may occur at non-zero-lag in time-shift or offset-shift gathers. Based on the operation of RTM images produced by the time-shift imaging condition, the non-zero-lag time-shift images exhibit a spatial shift; we propose an approach to correct them by a second pass of migration similar to zero-offset depth migration; the proposed approach is based on the local poststack depth migration assumption. After the proposed second-pass migration, the time-shift CIGs appear to be flat and can be stacked. The stack enhances the energy of seismic events that are defocused at zero time lag due to the inaccuracy of the model, even though the new focused events stay at the previous positions, which might deviate from the true positions of seismic reflection. With the stack, our proposed approach is also able to attenuate the long-wavelength RTM artifacts. In the case of tilted transverse isotropic migration, we propose a scheme to defocus the coherent noise, such as migration artifacts from residual multiples, by applying the original migration velocity model along the symmetry axis but with different anisotropic parameters in the second pass of migration. We demonstrate that our approach is effective to attenuate the coherent noise at subsalt area with two synthetic data sets and one real data set from the Gulf of Mexico.


2005 ◽  
Vol 45 (1) ◽  
pp. 421
Author(s):  
P. Bocca ◽  
L. Fava ◽  
E. Stolf

3D pre-stack depth migration (PSDM) reprocessing was conducted in 2003 on a portion of the Onnia 3D seismic cube, located in exploration permit AC/P-21, Timor Sea.The main objective of the reprocessing was to obtain the best seismic depth image and the most realistic structural reconstruction of the sub-surface to mitigate the risk factors associated with trap definition (trap retention and trap efficiency). This represents one of the main challenges for oil exploration in the area.The 3D PSDM methodology was chosen as the most appropriate imaging tool to define the correct sub-surface geometry and fault imaging through the use of an appropriate velocity field. An integrated approach to building the final velocity model was adopted, with a substantial contribution from the regional geological model.Several examples are given to demonstrate that the 3D PSDM reprocessing significantly improved the seismic image and thus the confidence in the interpretation, contributing strongly to the definition of the exploration targets.The interpretation of the new seismic data has resulted in a new structural picture in which higher confidence in seismic imaging has improved fault correlation. This has enabled better structural definition at the Middle Jurassic Plover Formation level that has reduced the complexity of the large Vesta Prospect, in the centre of the Swan Graben to the northwest of East Swan–1. Improved understanding of the fault reactivation mechanism and the structural elements of the trap (trap integrity) were eventually incorporated in the prospect risking.In the Swan Graben 3D PSDM has proved to be a very powerful instrument capable of producing significant impact on the exploration even in an area with a complex geological setting and a fairly poor seismic data quality.


Sign in / Sign up

Export Citation Format

Share Document