Flowing gas material balance – a useful tool to revise subsurface maps

2019 ◽  
Vol 59 (1) ◽  
pp. 228
Author(s):  
Bashirul Haq

Subsurface geological maps are an interpretation based on limited data, yet they are the most important vehicles used to explore for undiscovered hydrocarbons and to develop proven hydrocarbon reserves. The flowing material balance (FMB) method uses flowing well head pressure, rather than shut in reservoir pressure, to estimate gas in place (GIP) and reserves at any stage of reservoir depletion. In addition, it can be applied to estimating permeability and skin of the reservoir and predicting production problems. However, application of the FMB for revising subsurface maps is not yet well understood and requires further study. The aim of this research was to develop a systematic approach to redraw subsurface maps using FMB with the aid of reservoir simulation and interpretive contouring methods. The Havlena and Odeh interpretation method was applied to identify a drive mechanism and the FMB was used to estimate GIP, which was checked against the volumetric GIP value. The pressure history match technique and interpretive contouring were applied to draw the revised maps. This step-wise technique was applied to the Titas gas field, operated by Petrobangla, and found that the Titas gas reservoir’s drive mechanism was volumetric drive. A review of the literature, including old reports and well drilling data, confirmed that there was no evidence of aquifer drive and gas water contact in the ‘A sand’ layers. Subsurface maps of sands A2, A3 and A4 were redrawn and validated using field data.

Author(s):  
Tri Firmanto ◽  
Muhammad Taufiq Fathaddin ◽  
R. S. Trijana Kartoatmodjo

<em>T field is a producting gas field in North Bali PSC, which currently producing 210 mmscfd from paciran sand stone formation. Paciran formation extends more than 20 km across the PSC area, which consists of 3 developed gas fields and one potential development field.  The flowing material balance analysis conducted on T field suggests possibility of reservoir connectivty between this field and its neighboring fields. Even though each field is already have a well defined Gas Water Contact, a thorough investigation was done using hyrdodynamic potential analysis to see if theres any hydrodynamic potential that allowed connectivity between these fields, and enable tilted contact occurred between these field. Using pressure data taken from each fields exploration wells the analysis can be conducted that conclude that there is an existing hydrodynamic potential between gas fields in paciran formation. A review on the tilted contact analysis concludes that the existing hydrodynamic potential is not enough to tilt the contact as per actually observed contact</em>.


2019 ◽  
Author(s):  
Azis Hidayat ◽  
Dwi Hudya Febrianto ◽  
Elisa Wijayanti ◽  
Diniko Nurhajj ◽  
Ahmad Sujai ◽  
...  

1973 ◽  
Vol 13 (06) ◽  
pp. 328-334
Author(s):  
J.M. Dumore

Abstract A material balance is developed for a gas reservoir in which the rising gas/water contact remains horizontal. The time-integrated cumulative water influx is introduced, which for numerical computations is sometimes more advantageous than the van Everdingen and Hurst integral. On the basis of the equations developed, material balance calculations of the history of an actual gas field are carried out to calculate the water influx. The strength of the estimated radial, limited aquifer, which must supply the water for the influx, is determined. It appears that the strength decreases with time and asymptotically approaches a limiting value. (Some possible reasons for this decrease are mentioned.) If we take the strength as constant and equal to the limiting value, however, very small deviations from the past pressures occur. With the same value for the strength of the aquifer, the future behavior of the gas reservoir is computed, assuming constant gas production rate and no water production. Introduction For a depletion-type gas reservoir - i.e., when there is no water encroachment - the average gas pressure is a function of the cumulative production pressure is a function of the cumulative production and can easily be calculated from a material balance. For a gas reservoir bounded by an aquifer, the average gas pressure also depends on the water influx, which in turn depends on the rate of pressure decline and thus on the production rate. In this case the material balance is much more complicated. In the following we have developed the material balance of a bottom-water-drive gas reservoir, in which the rising gas/water contact remains horizontal. In a numerical example, the equations are applied to an actual gas field in Northwest Germany. THE GAS RESERVOIR Let us consider a gas reservoir bounded by a horizontal gas/water contact. The bulk area of a horizontal cross-section through the reservoir at a height b above the original gas/water contact is denoted by A(h), and the part of this area taken up by free gas is denoted by F(h). in which and Swc are the average values of porosity and connate water saturation at level h. porosity and connate water saturation at level h. Function F(h) can also be considered as the free gas volume in the reservoir at level h per unit height. Consequently, the free gas volume in the reservoir between the original gas/water contact h = 0 and a certain level h = h' is 0 The total original free gas volume in the reservoir is in which H is the height of the top of the gas-bearing formation above the original gas/water contact; i.e., the closure of the reservoir. The original volume of free gas in place, measured at standard conditions, is where the reciprocal gas formation volume factor is defined by Since in general we may take the average reservoir temperature for Tres, 1/Bg is a function of pressure only. A fair approximation of Eq. 4 is obtained by taking (1/Bg)i independently of h and equal to the value corresponding to the average initial reservoir pressure. Then pressure. Then SPEJ P. 328


2021 ◽  
Author(s):  
Jie He ◽  
Xiangdong Guo ◽  
Hongjun Cui ◽  
Kaiyu Lei ◽  
Yanyun Lei ◽  
...  

Abstract The determination of dynamic reserves of gas well is an important basis for rational production allocation and development of a single well. The commonly used flow material balance method (FMB method) uses the slope of the curve of wellhead pressure and cumulative production after stable production of gas well to replace the slope of the curve of average formation pressure and cumulative production to calculate the controlled reserves of single well. However, based on the theoretical calculation, the FMB method ignores the change of natural gas compression coefficient, viscosity and deviation coefficient in the production process. After considering these changes, the slope of the curve of the relationship between bottom hole pressure and cumulative production and the slope of the curve of the relationship between average formation pressure and cumulative production are not equal. In order to solve this problem, the influence of pressure on each parameter is considered, and the equation of modified flowing material balance method is derived. The application of Yan'an gas field in Ordos Basin shows that: compared with the results of the material balance method, the result of the flow material balance method is smaller, and the maximum error is 58.816%. The consequence of the modified mobile material balance method is more accurate, and the average error is 2.114%, which has good applicability. This study provides technical support for an accurate evaluation of dynamic reserves of tight gas wells in Yan'an gas field, and has important guiding significance for economic and efficient development of gas reservoir.


Author(s):  
Vitaly P. Kosyakov ◽  
Amir A. Gubaidullin ◽  
Dmitry Yu. Legostaev

This article presents an approach aimed at the sequential application of mathematical models of different complexity (simple to complex) for modeling the development of a gas field. The proposed methodology allows the use of simple models as regularizers for the more complex ones. The main purpose of the applied mathematical models is to describe the energy state of the reservoir&nbsp;— reservoir pressure. In this paper, we propose an algorithm for adapting the model, which allows constructing reservoir pressure maps for the gas field, as well as estimating the dynamics of reservoir pressure with a possible output for determining the position of the gas-water contact level.


2015 ◽  
Vol 733 ◽  
pp. 17-22
Author(s):  
Yang Liu ◽  
Zhuo Pu He ◽  
Qi Ma ◽  
Yu Hang Yu

In order to improve the drilling speed, lower the costs of development and solve the challenge of economies of scale development in sulige gas field, the key techniques research on long horizontal section of horizontal well drilling speed are carried out. Through analyzing the well drilling and geological data in study area, and supplemented by the feedback of measured bottom hole parameters provided by underground engineering parameters measuring instrument, the key factors restricting the drilling speed are found out and finally developed a series of optimum fast drilling technologies of horizontal wells, including exploitation geology engineering technique, strengthen the control of wellbore trajectory, optimize the design of the drill bit and BHA and intensify the drilling parameters. These technologies have a high reference value to improve the ROP of horizontal well in sulige gas field.


2021 ◽  
Author(s):  
Bashirul Haq

Abstract Sour gas reservoirs are vital sources for natural gas production. Sulphur deposition in the reservoir reduces a considerable amount of gas production due to permeability reduction. Consequently, well health monitoring and early prediction of Sulphur deposition are crucial for effective gas production from a sour gas reservoir. Dynamic gas material balance analysis is a useful technique in calculating gas initially in place utilizing the flowing wellhead or bottom hole pressures and rates during the well's lifetime. The approach did not apply to monitor a producing gas's health well and detect Sulphur deposition. This work aims to (i) modify dynamic gas material balance equation by adding the Sulphur deposition term, (ii) build a model to predict and validate the issue utilizing the modified equation. A unique form of the flowing material balance is developed by including Sulphur residue term. The curve fitting tool and modified flowing gas material balance are applied to predict well-expected behaviour. The variation between expected and actual performance indicates the health issue of a well. Initial, individual components of the model are tested. Then the model is validated with the known values. The workflow is applied to active gas field and correctly detected the health issue. The novel workflow can accurately predict Sulphur evidence. Besides,the workflow can notify the production engineers to take corrective measures about the subject. Keywords: Sulfur deposition, Dynamic gas material balance analysis, Workflow


2019 ◽  
Vol 8 (4) ◽  
pp. 1484-1489

Reservoir performance prediction is important aspect of the oil & gas field development planning and reserves estimation which depicts the behavior of the reservoir in the future. Reservoir production success is dependent on precise illustration of reservoir rock properties, reservoir fluid properties, rock-fluid properties and reservoir flow performance. Petroleum engineers must have sound knowledge of the reservoir attributes, production operation optimization and more significant, to develop an analytical model that will adequately describe the physical processes which take place in the reservoir. Reservoir performance prediction based on material balance equation which is described by Several Authors such as Muskat, Craft and Hawkins, Tarner’s, Havlena & odeh, Tracy’s and Schilthuis. This paper compares estimation of reserve using dynamic simulation in MBAL software and predictive material balance method after history matching of both of this model. Results from this paper shows functionality of MBAL in terms of history matching and performance prediction. This paper objective is to set up the basic reservoir model, various models and algorithms for each technique are presented and validated with the case studies. Field data collected related to PVT analysis, Production and well data for quality check based on determining inconsistencies between data and physical reality with the help of correlations. Further this paper shows history matching to match original oil in place and aquifer size. In the end conclusion obtained from different plots between various parameters reflect the result in history match data, simulation result and Future performance of the reservoir system and observation of these results represent similar simulation and future prediction plots result.


Sign in / Sign up

Export Citation Format

Share Document