ENVIRONMENTAL ISSUES IN PIPELINE FACILITY ABANDONMENT

1998 ◽  
Vol 38 (2) ◽  
pp. 172
Author(s):  
J.B. Hinwood ◽  
L.R. Denis

A condition of offshore production licences in Australia, as in most countries, is that the operator undertakes to remove all facilities including pipelines. Frequently, when decommissioning an offshore facility, the operator will seek to leave the pipelines in place to avoid the costs of removal. In order to obtain approval for in-situ abandonment, however, the operator must satisfy regulatory authorities that the pipelines pose no hazards to the environment or to recognised beneficial uses of the offshore zone. Potential hazards to be considered include mechanical or physical effects of the pipe on the seabed, chemical and water quality effects due both to release of residues of the contents of the pipe and to the degradation of the pipe walls and coatings by mechanical and chemical action, and ecological effects.In reaching a recommendation in a particular case the above factors must be addressed, and it must be shown with reasonable certainty that recognised beneficial uses will not be disadvantaged. A strategy for reaching this position is outlined.

1995 ◽  
Vol 32 (2) ◽  
pp. 281-288
Author(s):  
Susan Taljaard ◽  
Willem A. M. Botes

In South Africa the ultimate goal in water quality management is to keep the water resources suitable for all “beneficial uses”. Beneficial uses provides a basis for the derivation of water quality guidelines, which, for South Africa, are defined in Water quality guidelines for the South African coastal zone (DWAF, 1991). The CSIR has developed a practical approach to marine water quality management, taking into account international trends and local experience, which can be applied to any coastal development with potential influence on water quality. The management plan is divided into three logical components, i.e. • site-specific statutory requirements and environmental objectives; • system design with specific reference to influences on water quality; and • monitoring programmes. Within this management approach water quality issues are addressed in a holistic manner, through focused procedures and clear identification of information requirements. This paper describes the procedures and information requirements within each component of the water quality management plan, with specific reference to marine disposal systems. Ideally, the management plan should be implemented from the feasibility and conceptual design phase of a development and the timing of the different procedures within the development process are therefore also highlighted. However, the logical lay-out of procedures allows for easy initiation (even to existing disposal system) at any stage of development.


2017 ◽  
Vol 2017 (4) ◽  
pp. 5598-5617
Author(s):  
Zhiheng Xu ◽  
Wangchi Zhou ◽  
Qiuchen Dong ◽  
Yan Li ◽  
Dingyi Cai ◽  
...  

2011 ◽  
Vol 17 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Nada Babovic ◽  
Dejan Markovic ◽  
Vojkan Dimitrijevic ◽  
Dragan Markovic

This paper shows the results obtained in field analysis performed at the Tamis River, starting from the settlement Jasa Tomic - border between Serbia and Romania to Pancevo - confluence of Tamis into the Danube. The Tamis is a 359 km long river rising in the southern Carpathian Mountains. It flows through the Banat region and flows into the Danube near Pancevo. During the years the water quality of the river has severely deteriorated and badly affected the environment and the river ecosystem. In situ measurements enabled determination of physico-chemical parameters of water quality of the Tamis River on every 400 m of the watercourse, such as: water temperature, pH value, electrical conductivity, contents of dissolved oxygen and oxygen saturation. The main reason of higher pollution of Tamis is seen in connection to DTD hydro system. Sampling was performed at 7 points with regard to color, turbidity, total hardness, alkalinity, concentration of ammonium nitrogen, nitrite nitrogen, nitrate nitrogen, iron, chlorides and sulphates in samples. The aim of the present work was to evaluate water quality in the Tamis River taking into account significant pollution, which originates from settlements, industry and agriculture, and to suggest appropriate preventive measures to further pollution decreasing of the river's water.


Sensors ◽  
2009 ◽  
Vol 9 (7) ◽  
pp. 5825-5843 ◽  
Author(s):  
Lonneke Goddijn-Murphy ◽  
Damien Dailloux ◽  
Martin White ◽  
Dave Bowers

2007 ◽  
Vol 55 (5) ◽  
pp. 161-168 ◽  
Author(s):  
T.H. Heim ◽  
A.M. Dietrich

Pipe relining via in situ epoxy lining is used to remediate corroded plumbing or distribution systems. This investigation examined the effects on odour, TOC, THM formation and disinfectant demand in water exposed to epoxy-lined copper pipes used for home plumbing. The study was conducted in accordance with the Utility Quick Test, a migration/leaching method for utilities to conduct sensory analysis of materials in contact with drinking water. The test was performed using water with no disinfectant and levels of chlorine and monochloramines representative of those found in the distribution system. Panelists repeatedly and consistently described a “plastic/adhesive/putty” odour in the water from the pipes. The odour intensity remained relatively constant for each of two subsequent flushes. Water samples stored in the epoxy-lined pipes showed a significant increase in the leaching of organic compounds (as TOC), and this TOC was demonstrated to react with free chlorine to form trichloromethane. Water stored in the pipes also showed a marked increase in disinfectant demand relative to the water stored in glass control flasks. A study conducted at a full scale installation at an apartment demonstrated that after installation and regular use, the epoxy lining did not yield detectable differences in water quality.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2699 ◽  
Author(s):  
Jian Li ◽  
Liqiao Tian ◽  
Qingjun Song ◽  
Zhaohua Sun ◽  
Hongjing Yu ◽  
...  

Monitoring of water quality changes in highly dynamic inland lakes is frequently impeded by insufficient spatial and temporal coverage, for both field surveys and remote sensing methods. To track short-term variations of chlorophyll fluorescence and chlorophyll-a concentrations in Poyang Lake, the largest freshwater lake in China, high-frequency, in-situ, measurements were collected from two fixed stations. The K-mean clustering method was also applied to identify clusters with similar spatio-temporal variations, using remote sensing Chl-a data products from the MERIS satellite, taken from 2003 to 2012. Four lake area classes were obtained with distinct spatio-temporal patterns, two of which were selected for in situ measurement. Distinct daily periodic variations were observed, with peaks at approximately 3:00 PM and troughs at night or early morning. Short-term variations of chlorophyll fluorescence and Chl-a levels were revealed, with a maximum intra-diurnal ratio of 5.1 and inter-diurnal ratio of 7.4, respectively. Using geostatistical analysis, the temporal range of chlorophyll fluorescence and corresponding Chl-a variations was determined to be 9.6 h, which indicates that there is a temporal discrepancy between Chl-a variations and the sampling frequency of current satellite missions. An analysis of the optimal sampling strategies demonstrated that the influence of the sampling time on the mean Chl-a concentrations observed was higher than 25%, and the uncertainty of any single Terra/MODIS or Aqua/MODIS observation was approximately 15%. Therefore, sampling twice a day is essential to resolve Chl-a variations with a bias level of 10% or less. The results highlight short-term variations of critical water quality parameters in freshwater, and they help identify specific design requirements for geostationary earth observation missions, so that they can better address the challenges of monitoring complex coastal and inland environments around the world.


2019 ◽  
pp. 27-45
Author(s):  
Deborah B. Pouder ◽  
Stephen A. Smith

Author(s):  
Caitlyn C. Mayer ◽  
Khalid A. Ali

The Ashepoo, Combahee, Edisto (ACE) Basin in South Carolina is one of the largest undeveloped estuaries in the Southeastern United States. This system is monitored and protected by several government agencies to ensure its health and preservation. However, as populations in surrounding cities rapidly expand and land is urbanized, the surrounding water systems may decline from an influx of contaminants, leading to hypoxia, fish kills, and eutrophication. Conventional in situ water quality monitoring methods are timely and costly. Satellite remote sensing methods are used globally to monitor water systems and can produce an instantaneous synopsis of color-producing agents (CPAs), including chlorophyll-a, suspended matter (TSM), and colored-dissolved organic matter by applying bio-optical models. In this study, field, laboratory, and historical land use land cover (LULC) data were collected during the summers of 2002, 2011, 2015, and 2016. The results indicated higher levels of chlorophyll, ranging from 2.94 to 12.19 μg/L, and TSM values were from 60.4 to 155.2 mg/L between field seasons, with values increasing with time. A model was developed using multivariate, partial least squares regression (PLSR) to identify wavelengths that are more sensitive to chlorophyll-a (R2 = 0.49; RMSE = 1.8 μg/L) and TSM (R2 = 0.40; RMSE = 12.9 mg/L). The imbrication of absorption and reflectance features characterizing sediments and algal species in ACE Basin waters make it difficult for remote sensors to distinguish variations among in situ concentrations. The results from this study provide a strong foundation for the future of water quality monitoring and for the protection of biodiversity in the ACE basin.


Author(s):  
Erwin Theofilius ◽  
Zahidah Hasan ◽  
Asep Agus Handaka ◽  
Herman Hamndani

This study conducted to determine the water quality of Situ Ciburuy based on the structure of the gastropod community as a bioindicator. The survey method used in this study based on collecting data directly at the research area (purpose sampling method).  For instance, species and density of gastropods were descriptively analyzed, using diversity index and evenes index. For instance, The findings showed that level of water quality in  Situ Ciburuy based on gastropods bioindicators was lightly polluted. That is indicated by the low to moderate diversity of gastropods, which ranges from 1.31-1.98. The Shannon evenness index (0,73-0.95) revealed low gastropod species diversity in Situ Ciburuy, indicating low evenness of gastropod in Situ Ciburuy.


2014 ◽  
Vol 2 (3) ◽  
Author(s):  
Wihelmina Dimara ◽  
Edwin D Ngangi ◽  
Lukas L.J.J Mondoringin

The objective of this research was to evaluate the suitability of several environment factors and water quality parameters for development of seaweed culture in Kampung Sakabu.  The research was conducted through observation at three stations while protection factor and bottom substrate of waters were observed visually. Water quality parameters including pH, salinity, current rate, temperature were measured in situ and the compared to Standard Water Quality Citeria by Bakosurtanal 1996.  Research results were divided into three suitability categories namely 1) very suitable, 2) suitable, and 3) less suitable.  In general, environmental condition and water quatily in Kampung Sakabu were categorized as suitable to very suitable. This results indicated that         waters of Kampung Sakabu was very potential for development of seaweed culture. Keywords:  Kampung Sakabu, seaweeds, area suitability, water quality


Sign in / Sign up

Export Citation Format

Share Document