Preliminary estimates of genetic parameters for carcass and meat quality traits in Australian sheep

2010 ◽  
Vol 50 (12) ◽  
pp. 1135 ◽  
Author(s):  
S. I. Mortimer ◽  
J. H. J. van der Werf ◽  
R. H. Jacob ◽  
D. W. Pethick ◽  
K. L. Pearce ◽  
...  

Using performance from progeny born in 2007 and 2008 generated by the Information Nucleus program of the Cooperative Research Centre for Sheep Industry Innovation, preliminary estimates of heritability were obtained for a range of novel carcass and meat attributes of lamb relevant to consumers, including carcass characteristics, meat quality and nutritional value of lamb. Phenotypic and genetic correlations of live animal traits with carcass composition and meat quality traits were also estimated. The data were from progeny located at eight sites, sired by 183 rams from Merino, maternal and terminal meat breeds and were representative of the Merino, Border Leicester × Merino, Terminal × Merino and Terminal × Border Leicester-Merino production types of the Australian sheep industry. Data were available from 7176 lambs for weaning weight, 6771 lambs for ultrasound scanning and 4110 lambs for slaughter traits. For the novel meat quality traits, generally moderate to high heritability estimates were obtained for meat quality measures of shear force (0.27 aged 1 day, 0.38 aged 5 days), intramuscular fat (0.39), retail meat colour (range of 0.09 to 0.44) and myoglobin content (0.22). The nutritional value traits of omega-3 fatty acids and iron and zinc contents tended to have low to moderate heritabilities (0.11–0.37), although these were based on fewer records. Fresh meat colour traits were of low to moderate heritability (0.06–0.21) whereas measures of meat pH were of low heritability (~0.10). For the carcass traits, estimates of heritability were moderate to high for the various measures of carcass fat (0.18–0.50), muscle weight (0.22–0.35), meat yield (0.24–0.35), carcass muscle dimensions (0.25–0.34) and bone weight (0.27). Results indicate that for most lamb carcass and meat quality traits there is sufficient genetic variation for selection to alter successfully these characteristics. Additionally, most genetic correlations of live animal assessments of bodyweight, muscle and subcutaneous fat with the carcass and meat quality traits were favourable. Appropriate definition of breeding objectives and design of selection indexes should be able to account for the small unfavourable relationships that exist and achieve the desired outcomes from breeding programs.

2003 ◽  
Vol 54 (2) ◽  
pp. 149 ◽  
Author(s):  
A. Reverter ◽  
D. J. Johnston ◽  
D. M. Ferguson ◽  
D. Perry ◽  
M. E. Goddard ◽  
...  

Beef cattle data from temperate (TEMP, n = 3947) and tropically (TROP, n = 4137) adapted breeds were analysed to compute estimates of genetic and phenotypic correlations between animal, abattoir carcass, and meat quality measures. Live animal traits included: liveweight (S2LWT), scanned subcutaneous rump fat depth (S2P8), scanned eye muscle area (S2EMA), flight time (S1FT), and finishing average daily gain (FADG). Carcass traits included: hot carcass weight (CWT), retail beef yield percentage (RBY), intramuscular fat percentage (IMF), subcutaneous rump fat depth (P8), eye muscle length by width (ELW), and meat colour score (MEATC). Meat quality measures taken on 2 muscles [M. longissimus thoracis et lumborum (LTL) and M. semitendinosus (ST)] included: shear force of LTL (LTL_SF) and ST (ST_SF); compression of the ST (ST_C); cooking loss % of the LTL (LTL_CL%) and ST (ST_CL%); Minolta LTL L* (LTL_L*), a* (LTL_a*), ST a* (ST_a*); and consumer-assessed LTL tenderness score (LTL_TEND). Genetic and phenotypic correlations between animal measures and related carcass traits were moderate to very high for TEMP and TROP. Genetic correlations between S2LWT and CWT were 0.89 and 0.82, between S2P8 and P8 0.80 and 0.88, and between S2EMA and ELW 0.62 and 0.68, for TEMP and TROP, respectively. Genetic correlations between animal measures and other carcass traits varied; moderate genetic correlations were estimated between S2P8 and RBY (–0.57, –0.19 for TEMP, TROP) and S2P8 and IMF (0.39, 0.23 for TEMP, TROP). Genetic correlations between animal and meat quality measures were moderate to low. For TEMP, moderate genetic correlations were estimated between S2P8 and LTL_TEND (0.38), FADG and ST_a* (–0.49), and FADG and LTL_TEND (0.45); and for TROP, S1FT and LTL_SF (–0.54), and S2EMA and LTL_L* (–0.46). Phenotypic correlations between animal and meat quality were generally low and close to zero. Several moderate to high genetic correlations existed between carcass and meat quality traits. In general, fatness measures were genetically correlated with tenderness (e.g. IMF and LTL_TEND 0.61, 0.31 for TEMP, TROP). CWT was genetically correlated with meat colour (CWT and LTL_L* 0.66, 0.60 for TEMP, TROP) and objective tenderness measures (CWT and ST_C –0.52, –0.22 for TEMP, TROP). Once again phenotypic correlations between carcass and meat quality were low, indicating that few phenotypic predictors of meat quality traits were identified. Several of the genetic correlations show that both animal and abattoir carcass traits may be of use as indirect measures for carcass and meat quality traits in multiple trait genetic evaluation systems.


2003 ◽  
Vol 54 (2) ◽  
pp. 135 ◽  
Author(s):  
D. J. Johnston ◽  
A. Reverter ◽  
D. M. Ferguson ◽  
J. M. Thompson ◽  
H. M. Burrow

Meat quality measures, including objective measures of tenderness (shear force and compression), were taken on 2 muscles [M. longissimus thoracis et lumborum (LTL) and M. semitendinosus (ST)] from 7566 carcasses from temperate (TEMP) and tropically adapted (TROP) beef cattle breeds. Animals were finished to 1 of 3 market carcass weight end-points (220, 280, or 340 kg) either on pasture or in a feedlot, and in 2 different geographic regions for TROP. Both the phenotypic and genetic expression of the traits were estimated at each market weight and for each finishing regime. Heritabilities and correlations between the traits were estimated for TEMP and TROP separately. Smaller additive variances and heritabilities were observed for temperate breeds compared with tropically adapted breeds for most of the traits studied. For TROP, the heritability of traits measured on the ST muscle [compression (ST_C), shear force (ST_SF), and L* Minolta lightness value (ST_L*)] was 0.27, 0.42, and 0.16, respectively, and for traits measured on the LTL muscle [compression (LTL_C), shear force (LTL_SF), L* Minolta lightness value (LTL_L*), a* Minolta redness value (LTL_a*), cooking loss% (LTL_CL%), and consumer assessed tenderness score (LTL_TEND)] 0.19, 0.30, 0.18, 0.13, 0.20, and 0.31, respectively. For TEMP, the heritability of traits measured on the ST muscle [ST_C, ST_SF, ST_L*, a* Minolta redness value (ST_a*), cooking loss % (ST_CL%)] was 0.12, 0.11, 0.17, 0.13, and 0.15, respectively, and of traits measured on the LTL muscle (LTL_C, LTL_SF, LTL_L, and LTL_TEND) were 0.08, 0.09, 0.17 and 0.18 respectively. Genetic correlations were moderate to high for tenderness measures (shear force and compression) between muscles for the same tenderness measure (e.g. LTL_SF and ST_SF was 0.46 for TROP) and within a muscle for the different measures (e.g. ST_C and ST_SF was 0.83 for TROP). Phenotypic and genetic correlations between LTL_L* and all objective measures of tenderness were negative (e.g. LTL_SF and LTL_L* for TROP was –0.40). The genetic relationship between LTL_SF and LTL_TEND was –0.79 and –0.49 for TROP and TEMP, respectively. Finishing system affected the phenotypic expression of all traits. Pasture-finished, compared with feedlot-finished, animals had higher shear force and compression measures, darker meat colour, and lower sensory tenderness scores for both TEMP and TROP. For TROP, heifers had higher shear force and compression measures, lower sensory tenderness scores, and darker meat colour (lower L* values) than steers. Genetic correlations between markets were generally high and close to unity with the exception of the ST_L*, LTL_L*, ST_C, and ST_SF for TEMP. Geographic region had little effect on the phenotypic and genetic expression of meat quality traits for TROP. Genetic correlations between finishing regimes for all traits were positive and close to unity, with the exception of ST_C and LTL_SF for TEMP, and LTL_L* and LTL_CL% for TROP. Genetic improvement of meat quality traits is a possibility for tropically adapted breeds given the moderate heritabilities, adequate phenotypic variance, generally favourable genetic correlations between traits, and little evidence of genotype by environment interactions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Simone Savoia ◽  
Andrea Albera ◽  
Alberto Brugiapaglia ◽  
Liliana Di Stasio ◽  
Alessio Cecchinato ◽  
...  

Abstract Background The possibility of assessing meat quality traits over the meat chain is strongly limited, especially in the context of selective breeding which requires a large number of phenotypes. The main objective of this study was to investigate the suitability of portable infrared spectrometers for phenotyping beef cattle aiming to genetically improving the quality of their meat. Meat quality traits (pH, color, water holding capacity, tenderness) were appraised on rib eye muscle samples of 1,327 Piemontese young bulls using traditional (i.e., reference/gold standard) laboratory analyses; the same traits were also predicted from spectra acquired at the abattoir on the intact muscle surface of the same animals 1 d after slaughtering. Genetic parameters were estimated for both laboratory measures of meat quality traits and their spectra-based predictions. Results The prediction performances of the calibration equations, assessed through external validation, were satisfactory for color traits (R2 from 0.52 to 0.80), low for pH and purge losses (R2 around 0.30), and very poor for cooking losses and tenderness (R2 below 0.20). Except for lightness and purge losses, the heritability estimates of most of the predicted traits were lower than those of the measured traits while the genetic correlations between measured and predicted traits were high (average value 0.81). Conclusions Results showed that NIRS predictions of color traits, pH, and purge losses could be used as indicator traits for the indirect genetic selection of the reference quality phenotypes. Results for cooking losses were less effective, while the NIR predictions of tenderness were affected by a relatively high uncertainty of estimate. Overall, genetic selection of some meat quality traits, whose direct phenotyping is difficult, can benefit of the application of infrared spectrometers technology.


2007 ◽  
Vol 58 (8) ◽  
pp. 839 ◽  
Author(s):  
V. M. Ingham ◽  
N. M. Fogarty ◽  
A. R. Gilmour ◽  
R. A. Afolayan ◽  
L. J. Cummins ◽  
...  

The study estimated heritability for lamb growth and carcass performance, hogget ewe wool production, and worm egg count among crossbred progeny of maternal breed sires, as well as the genetic and phenotypic correlations among the traits. The data were from crossbred progeny of 91 sires from maternal breeds including Border Leicester, East Friesian, Finnsheep, Coopworth, White Suffolk, Corriedale, and Booroola Leicester. The sires were mated to Merino ewes at 3 sites over 3 years (and also Corriedale ewes at one site), with 3 common sires used at each site and year to provide genetic links. These sheep comprised part of the national maternal sire central progeny test program (MCPT) to evaluate the genetic variation for economically important production traits in progeny of maternal and dual-purpose (meat and wool) sires and the scope for genetic improvement. The matings resulted in 7846 first-cross lambs born, with 2964 wether lambs slaughtered at an average age of 214 days, and wool data from 2795 hogget ewes. Data were analysed using univariate mixed models containing fixed effects for site, year, sex and type of birth and rearing, dam source and sire breed, and random terms for sire and dam effects. Heritabilities and genetic correlations were estimated based on variances from progeny of 70 sires by fitting the same mixed models using a REML procedure in univariate and multivariate analyses. Estimates of heritability were low for lamb growth traits (0.07–0.29), meat colour and meat pH (0.10–0.23), and faecal worm egg count (0.10), moderate for carcass fat and muscle traits (0.32–0.47), and moderate to high for wool traits (0.36–0.55). Estimates of direct genetic correlations among liveweights at various ages were high and positive (0.41–0.77) and those between liveweights and most carcass and meat quality traits were small and varied in sign. Liveweights were moderately to highly positively correlated with most wool traits, except fibre diameter (–0.28–0.08). The study indicates that there is genetic variation for wool, growth, carcass, and meat quality traits, as well as for faecal worm egg count, with scope for selection within Australian maternal sire breeds of sheep.


2017 ◽  
Vol 95 (10) ◽  
pp. 4260-4273 ◽  
Author(s):  
S. I. Mortimer ◽  
S. Hatcher ◽  
N. M. Fogarty ◽  
J. H. J. van der Werf ◽  
D. J. Brown ◽  
...  

2011 ◽  
Vol 68 (6) ◽  
pp. 620-625 ◽  
Author(s):  
Leila de Genova Gaya ◽  
Gerson Barreto Mourão ◽  
José Bento Sterman Ferraz ◽  
Elisângela Chicaroni de Mattos ◽  
Andrezza Marcovig Moreira Alves da Costa ◽  
...  

2006 ◽  
Vol 57 (9) ◽  
pp. 1029 ◽  
Author(s):  
Meridy J. Kadel ◽  
David J. Johnston ◽  
Heather M. Burrow ◽  
Hans-U. Graser ◽  
Drewe M. Ferguson

Flight time, an objective measure of temperament, was recorded in 3594 Brahman, Belmont Red, and Santa Gertrudis heifers and steers. Two subjective measures of temperament (crush score and flight speed score) were also available for over 2000 of these animals. Temperament measures were recorded post-weaning (average age 8 months) and again at the start of finishing (average age 19 months) on a subset of the animals. Nine meat quality traits were measured on these animals and included measures on 2 different muscles [M. longissimus thoracis et lumborum (LTL) and M. semitendinosus (ST)]. The heritability of flight time measured post-weaning and at the start of finishing was 0.30 and 0.34, respectively, with a repeatability of 0.46 across the measurement times. Heritabilities for scored temperament traits were 0.21, 0.19, and 0.15 for post-weaning flight speed score, post-weaning crush score, and start of finishing crush score, respectively. Genetic correlations across measurement times for flight time were 0.98 and 0.96 for crush score, indicating a strong underlying genetic basis of these temperament measures over time; however, the corresponding phenotypic correlations were lower (0.48 and 0.37, respectively). Longer flight times (i.e. better temperament) were genetically correlated with improved tenderness (i.e. lower shear force and higher tenderness scores), with genetic correlations of –0.42 and 0.33 between LTL shear force, and Meat Standards Australia (MSA) tenderness, respectively. Genetic correlations between post-weaning crush score and the same meat quality traits were 0.39 and –0.47, respectively. However, genetic and phenotypic correlations between measures of temperament and other meat quality traits were generally low, with the exception of crush scores with LTL Minolta a* value (–0.37 and –0.63 for post-weaning and start of finishing measurement time, respectively). Predicted correlated responses of –0.17 kg LTL shear force and 2.6 MSA tenderness points per generation were predicted based on the genetic parameter estimates and a recording regime of both flight time and crush scores. Selection based on the measures of temperament described in this study could be used to improve temperament itself and correlated improvements can also occur in meat tenderness and eating quality traits in tropically adapted breeds of cattle.


2017 ◽  
Vol 52 (3) ◽  
pp. 205-213 ◽  
Author(s):  
Adriane Molardi Bainy ◽  
Rodrigo Pelicioni Savegnago ◽  
Luara Afonso de Freitas ◽  
Beatriz do Nascimento Nunes ◽  
Jaqueline Oliveira Rosa ◽  
...  

Abstract: The objective of this work was to estimate genetic parameters for bird carcass and meat quality traits, as well as to explore the genetic patterns of the breeding values of this population using cluster analyses. Data from 1,846 birds were used to estimate the genetic parameters of production and quality traits using the multiple-trait animal model, and cluster analyses were performed. The heritability estimates ranged from 0.08± 0.03 for meat pH measured 24 hours after slaughter to 0.85± 0.09 for body weight. The genetic correlations between production traits were high and positive. The genetic correlations between meat quality traits were low and were not informative due to the high standard errors (same magnitudes as those of the genetic correlations). The genetic correlations between meat production and quality traits were negative, except between production traits and meat lightness intensity. Based on breeding values (EBVs), the evaluated population can be divided into four groups through cluster analyses, and one group is suitable for selection because the birds presented EBVs above and around the average of the population, respectively, for production and quality traits. Therefore, it is possible to obtain genetic gains for production-related traits without decreasing meat quality.


2017 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
S. I. Mortimer ◽  
S. Hatcher ◽  
N. M. Fogarty ◽  
J. H. J. van der Werf ◽  
D. J. Brown ◽  
...  

Meat Science ◽  
2019 ◽  
Vol 156 ◽  
pp. 111-117 ◽  
Author(s):  
Simone Savoia ◽  
Andrea Albera ◽  
Alberto Brugiapaglia ◽  
Liliana Di Stasio ◽  
Alessio Cecchinato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document