Evaluation of the serum fructosamine test to monitor plasma glucose concentration in the late-pregnant sheep

2011 ◽  
Vol 51 (7) ◽  
pp. 662 ◽  
Author(s):  
M. L. Sorondo ◽  
A. Cirio

Since the persistent decrease in blood glucose during late pregnancy in sheep is an index of high risk of metabolic disorder, the present study aimed to evaluate the capacity of the serum fructosamine (Fser) to retrospectively monitor blood glucose. Pregnant grazing sheep were assigned to three treatments: high energy (n = 8), supplemented with 400 g of corn grain from Day 100 until lambing; medium energy (n = 7), not supplemented, and low energy (n = 8), fasted from Days 136 to 141. In weekly blood samples (7 weeks before to 3 weeks after lambing), glucose, fructosamine, β-hydroxybutyrate and total proteins were determined. Serum protein were stable and without differences among groups. β-hydroxybutyrate was higher in the fasted group the week after fasting (P < 0.05). The regression analysis between plasma glucose and Fser in the same week and in the 3 weeks following, showed no significant correlations, actual or retrospective, neither considering all sheep nor within each energy level. The results did not support the usefulness of Fser for monitoring plasma glucose concentration in late pregnant ewes.

1998 ◽  
Vol 275 (3) ◽  
pp. E537-E542 ◽  
Author(s):  
Joseph Katz ◽  
John A. Tayek

Six subjects were infused with [U-13C]glucose (0.03–0.05 mg ⋅ kg−1 ⋅ min−1) starting 8–9 h after a meal, and the production of glucose, the recycling of glucose (the Cori cycle), the dilution of glucose by unlabeled carbon into the hepatic lactate-pyruvate pool, and gluconeogenesis were determined in these fasted volunteers by use of mass isotopomer analysis and equations previously described [J. A. Tayek and J. Katz. Am. J. Physiol.272 ( Endocrinol. Metab. 35): E476–E484, 1997]. A primed continuous 11-h infusion was started at 6:00 AM, and the above parameters were calculated after 3 h (for the 12-h fast) and at the end of the infusion (for the 20-h fast). Another group of five subjects was fasted for 40 h, and the above parameters were calculated as before. At 12, 20, and 40 h of fasting, respectively, blood glucose was 93 ± 2, 83 ± 2, and 71 ± 2 (SE) mg/dl; glucose production was 2.3, 1.8, and 1.77 mg ⋅ kg−1 ⋅ min−1; the recycling of labeled carbon was 8, 15, and 15%, and that of glucose molecules (Cori cycle) was 18, 35, and 36%; the contribution of gluconeogenesis to glucose production was 41, 71, and 92% or 0.96, 1.29, and 1.64 mg ⋅ kg−1 ⋅ min−1; and the contribution of other sources to glucose production was 1.37, 0.53, and 0.15 mg ⋅ kg−1 ⋅ min−1. The recycling of glucose is important in prolonged fasting for the maintenance of plasma glucose concentration. We demonstrate here that gluconeogenesis can be easily measured and that it accounts for ∼90% of glucose production after a 40-h fast.


2009 ◽  
Vol 76 (2) ◽  
pp. 173-178 ◽  
Author(s):  
María L Sorondo ◽  
Alberto Cirio

The usefulness of the serum fructosamine (Fser) to monitor the retrospective glucose concentrations in transitional dairy cows (n=17) was evaluated. In weekly blood samples (3 weeks before to 5 weeks after calving) concentrations of plasma glucose and serum fructosamine, β-hydroxybutyrate (βOHB) and total proteins were determined. The observed Fser concentrations (271±55 mean value, range 152–423 μmol/l) were within the range reported in the literature, and showed a progressive and significant decrease after calving. Mean plasma glucose concentration was 60·6±5·0 (range 39·9–82·2) mg/dl increasing from week 3 before calving to the week of calving and then decreasing during the next 5 weeks of lactation. This decrease was coincident with inverse relationships between plasma glucose and milk yield (P=0·03) and serum βOHB (P<0·001). Linear regression analysis performed between serum fructosamine and (a) plasma glucose concentration of the same sampling and (b) plasma glucose concentration of 1, 2 and 3 weeks preceding the sampling, did not show significant and systematizing positive correlations. Persistent hypoproteinaemias that could affect the fructosamine concentrations were not found: mean value and range of serum proteins was 6·3±1·0 and 4·8–7·8 g/dl, respectively, and no correlation was found between serum proteins and Fser (P=0·26). Results did not support the possibility of retrospective monitoring of the plasma glucose concentration by serum fructosamine in dairy cows in the transition period.


1989 ◽  
Vol 9 (3) ◽  
pp. 304-314 ◽  
Author(s):  
Kentaro Mori ◽  
Nancy Cruz ◽  
Gerald Dienel ◽  
Thomas Nelson ◽  
Louis Sokoloff

The lumped constant in the operational equation of the 2-[14C]deoxyglucose (DG) method contains the factor λ that represents the ratio of the steady-state tissue distribution spaces for [14C]DG and glucose. The lumped constant has been shown to vary with arterial plasma glucose concentration. Predictions based mainly on theoretical grounds have suggested that disproportionate changes in the distribution spaces for [14C]DG and glucose and in the value of λ are responsible for these variations in the lumped constant. The influence of arterial plasma glucose concentration on the distribution spaces for DG and glucose and on λ were, therefore, determined in the present studies by direct chemical measurements. The brain was maintained in steady states of delivery and metabolism of DG and glucose by programmed intravenous infusions of both hexoses designed to produce and maintain constant arterial concentrations. Hexose concentrations were assayed in acid extracts of arterial plasma and freeze-blown brain. Graded hyperglycemia up to 28 m M produced progressive decreases in the distribution spaces of both hexoses from their normoglycemic values (e.g., ∼ – 20% for glucose and – 50% for DG at 28 m M). In contrast, graded hypoglycemia progressively reduced the distribution space for glucose and increased the space for [14C]DG. The values for λ were comparatively stable in normoglycemic and hyperglycemic conditions but rose sharply (e.g., as much as 9–10-fold at 2 m M) in severe hypoglycemia.


2014 ◽  
Vol 6 (2) ◽  
pp. 75-78
Author(s):  
Sujaya Sham ◽  
B Poornima R Bhat ◽  
Aruna Kamath

ABSTRACT Background To compare the sensitivity and specificity of fasting plasma glucose (FPG) with that of standard glucose challenge test (GCT). Materials and methods Eighty-nine eligible pregnant women underwent GCT between 24th and 28th gestational week, followed by a diagnostic 3 hours 100 gm oral glucose tolerance test within 1 week. Out patient clinic in Father Muller Medical College Hospital, Mangalore. Data was analyzed for significance by chi-square test. Results Fasting plasma glucose concentration at a threshold value of 90 mg/dl and GCT at recommended standard threshold of 140 mg/dl yielded sensitivities of 66.7% and 100% respectively and specificities of 87.3% and 46.5% respectively. Reducing the threshold value of FPG to 80 mg/dl increased the sensitivity of test to 91.7% with specificity of 54.9% which was comparable to standard GCT, in our study. Conclusion Measuring FPG concentration using a cut-off of. 80 mg/dl is an easier, tolerable and more cost effective procedure than GCT for detecting more severe cases of GDM, i.e. the diabetes mellitus group. In resource poor settings with population belonging to average risk or high risk category, FPG at a cut-off of 90 mg/dl can be used to screen GDM. How to cite this article Sham S, Bhat BPR, Kamath A. Comparative Study of Fasting Plasma Glucose Concentration and Glucose Challenge Test for Screening Gestational Diabetes Mellitus. J South Asian Feder Obst Gynae 2014;6(2):75-78.


Metabolism ◽  
2007 ◽  
Vol 56 (11) ◽  
pp. 1576-1582 ◽  
Author(s):  
Rakesh S. Birjmohun ◽  
Radjesh J. Bisoendial ◽  
Sander I. van Leuven ◽  
Mariette Ackermans ◽  
Aelko Zwinderman ◽  
...  

2000 ◽  
Vol 279 (3) ◽  
pp. E520-E528 ◽  
Author(s):  
Thomas Laedtke ◽  
Lise Kjems ◽  
Niels Pørksen ◽  
Ole Schmitz ◽  
Johannes Veldhuis ◽  
...  

Impaired insulin secretion in type 2 diabetes is characterized by decreased first-phase insulin secretion, an increased proinsulin-to-insulin molar ratio in plasma, abnormal pulsatile insulin release, and heightened disorderliness of insulin concentration profiles. In the present study, we tested the hypothesis that these abnormalities are at least partly reversed by a period of overnight suspension of β-cell secretory activity achieved by somatostatin infusion. Eleven patients with type 2 diabetes were studied twice after a randomly ordered overnight infusion of either somatostatin or saline with the plasma glucose concentration clamped at ∼8 mmol/l. Controls were studied twice after overnight saline infusions and then at a plasma glucose concentration of either 4 or 8 mmol/l. We report that in patients with type 2 diabetes, 1) as in nondiabetic humans, insulin is secreted in discrete insulin secretory bursts; 2) the frequency of pulsatile insulin secretion is normal; 3) the insulin pulse mass is diminished, leading to decreased insulin secretion, but this defect can be overcome acutely by β-cell rest with somatostatin; 4) the reported loss of orderliness of insulin secretion, attenuated first-phase insulin secretion, and elevated proinsulin-to-insulin molar ratio also respond favorably to overnight inhibition by somatostatin. The results of these clinical experiments suggest the conclusion that multiple parameters of abnormal insulin secretion in patients with type 2 diabetes mechanistically reflect cellular depletion of immediately secretable insulin that can be overcome by β-cell rest.


1989 ◽  
Vol 257 (1) ◽  
pp. E35-E42 ◽  
Author(s):  
P. De Feo ◽  
G. Perriello ◽  
E. Torlone ◽  
M. M. Ventura ◽  
C. Fanelli ◽  
...  

To test the hypothesis that cortisol secretion plays a counterregulatory role in hypoglycemia in humans, four studies were performed in eight normal subjects. In all studies, insulin (15 mU.m-2.min-1) was infused subcutaneously (plasma insulin 27 +/- 1 microU/ml). In study 1, plasma glucose concentration and glucose fluxes [( 3-3H]glucose), substrate, and counterregulatory hormone concentrations were simply monitored, and plasma glucose decreased from 89 +/- 2 to 52 +/- 2 mg/dl for 12 h. In study 2, (pituitary-adrenal-pancreatic clamp), insulin and counterregulatory hormone secretion (except for catecholamines) was prevented by somatostatin (0.5 mg/h, iv) and metyrapone (0.5 g/4 h, per os), and glucagon, cortisol, and growth hormone were infused to reproduce the concentrations of study 1. In study 3 (lack of cortisol increase), the pituitary-adrenal-pancreatic clamp was performed with maintenance of plasma cortisol at basal levels, and glucose was infused, whenever needed, to reproduce plasma glucose concentration of study 2. Study 4 was identical to study 3, but exogenous glucose was not infused. Isolated lack of cortisol increase caused a approximately 22% decrease in hepatic glucose production (P less than 0.01) and a approximately 15% increase in peripheral glucose utilization (P less than 0.01), which resulted in greater hypoglycemia (37 +/- 2 vs. 52 +/- 2 mg/dl, P less than 0.01) despite compensatory increases in plasma epinephrine. Lack of cortisol response also reduced plasma free fatty acid, beta-hydroxybutyrate, and glycerol concentrations approximately 50%. We conclude that cortisol normally plays an important counterregulatory role during hypoglycemia by augmenting glucose production, decreasing glucose utilization, and accelerating lipolysis.


Sign in / Sign up

Export Citation Format

Share Document