Divergent breeding values for fatness or residual feed intake in Angus cattle. 4. Fat EBVs’ influence on fatness fluctuation and supplementary feeding requirements

2018 ◽  
Vol 58 (1) ◽  
pp. 67
Author(s):  
J. M. Accioly ◽  
K. J. Copping ◽  
M. P. B. Deland ◽  
M. L. Hebart ◽  
R. M. Herd ◽  
...  

The productivity of 500 Angus cows, divergently selected for either rib fat or residual feed intake (RFI) based on BREEDPLAN estimated breeding values (EBVs) and managed under two levels of nutrition (stocking rates), was evaluated. The study examined the effects of genetic line, nutrition and weaning history on profiles for weight, rib fat depth, fatness (rib fat depth adjusted for weight) and supplementary feed requirements from just before the first joining as heifers through to the weaning of their third calf. Cows gained both weight and fat as they grew older. Observed fluctuations in weight and rib fat depth, within each year, were associated with pasture availability and physiological demands. Cows that did not wean a calf in a given year became heavier and fatter than cows that did; and they remained so when they calved the following year. High-fat and High-RFI were always fatter and lighter than Low-fat and Low-RFI cows, respectively. The difference in rib fat and fatness between High- and Low-RFI lines (P < 0.001) was similar to, although slightly greater than, the difference between High- and Low-fat lines (P = 0.048) reflecting differences in rib fat EBVs between High-RFI (3.2 ± 1.47) and Low-RFI (–0.7 ± 1.3) compared with High-fat (1.1 ± 0.78) and Low-fat (–1.4 ± 0.67). Cows on High-Nutrition were heavier and fatter than those on Low-Nutrition (P < 0.001) but there were no significant interactions between genetic line and nutrition (P > 0.05). Supplementary feeding threshold was reached earlier by Low-fat and Low-RFI cows than their counterparts. Calculations based on the data in the present paper estimate that if cows lose condition at a rapid rate (1 condition score/month), then a cow with an extra 1 mm rib fat EBV would take 7.5 days longer to reach the same supplementary feeding threshold. Fat EBVs can, therefore, be a useful tool in assisting beef producers to match genotype to their production system.

2018 ◽  
Vol 58 (1) ◽  
pp. 103
Author(s):  
L. Anderton ◽  
J. M. Accioly ◽  
K. J. Copping ◽  
M. P. B. Deland ◽  
M. L. Hebart ◽  
...  

The present paper focuses on the economic evaluation of the observed differences in maternal productivity of different genetic lines in Angus cattle that were managed under contrasting nutritional regimes typical of southern Australia. Five hundred Angus cows were managed concurrently at two locations in southern Australia. On each site, the cows were managed under the following two different nutritional treatments: High and Low, to simulate different stocking rates. Cows selected for a divergence in either carcass rib-fat depth or residual feed intake based on mid-parent estimated breeding values for those traits, were allocated in replicate groups to either High- or Low-nutrition treatments. By design, the supplementary feeding regime was the same for the High and Low genetic lines to ensure genetic differences were not confounded with management differences. Animal productivity results from the experiment were used as input data to evaluate the economic performance of the four genetic lines under the two nutritional treatments. Two methods were used; the first was a gross-margin calculation of income minus variable costs as AU$ per breeding cow for a 1000-cow herd; the second was a whole-farm linear programming model maximising the gross margin. Stocking rates were optimised by matching the energy requirements for the whole herd with the energy available from pasture and supplementary feed on a representative 700-ha farm. Using the two methods of calculating gross margin (per cow and optimised per hectare), including examination of sensitivity to changes in prices of cattle and supplementary feed, the present study demonstrated that genetically leaner cows due to selection of low fat or low residual feed intake, had gross margins superior to those of genetically fatter cows. They generated more income by selling more liveweight due to heavier weights and higher stocking rates. The results are affected by the management system utilised and some confounding with growth (leaner genetic lines had higher growth estimated breeding values), but will assist producers to make more informed decisions about how to manage animal breeding and nutritional interactions.


2018 ◽  
Vol 58 (1) ◽  
pp. 94
Author(s):  
M. P. B. Deland ◽  
J. M. Accioly ◽  
K. J. Copping ◽  
J. F. Graham ◽  
S. J. Lee ◽  
...  

The present study determined the impact of maternal genetics for estimated breeding values for rib fat (High-Fat, Low-Fat) or residual feed intake (RFI; High-RFI, Low-RFI) on the carcass compliance of Angus steer progeny when reared pre-weaning under High or Low-Nutrition and post-weaning under various finishing system (grazing versus short-term feedlot). The dams were joined to sires of similar genetic background (close to average estimated breeding values) and sires were rotated among all dam genotypes, with herds located at either Struan Research Centre, near Naracoorte in the south-east of South Australia, or Vasse Research Station, in the south-west of Western Australia. The breeding herd was part of the Beef CRC maternal productivity project and cows were managed under either High or Low-Nutrition, achieved by adjustments to stocking rate in rotational grazing systems and supplementary feeding, so as to maintain ~20% difference in cow liveweight. The steer progeny were weaned at ~7 months of age, with individuals from both pre-weaning nutritional treatments being treated the same from then on at each site. Steers from Struan Research Centre in South Australia born in 2008 and 2009 were sold and grown out on pasture on a local commercial property. Steer calves born in 2010 at Vasse remained on the station where they were backgrounded on hay, followed by a short period (111 days) total mixed ration containing 40% grain. In the first year, steers from Struan (n = 58) were slaughtered together at ~2 years of age, and in the second year (n = 85), consigned to six slaughter groups as their ultrasound-scanned subcutaneous P8 (rump) fat reached 7 mm and their liveweight exceeded 550 kg. Steers from Vasse (n = 101) were slaughtered at ~12 months of age, all on the same day. High-Fat-line dams produced steers with carcasses with greater P8 fat than did Low-Fat-line dams at both sites. At Struan, when the 2008-born steers were slaughtered together, more steers from Low-Fat dams failed to meet minimum fat specifications, than steers from High-Fat dams (28% vs 9% respectively). The steers born in 2009 at Struan all met processor fat specifications but steers from the Low-Fat dams took longer to reach the fat threshold, and so had greater carcass weight, but attracted more price penalties because of increased dentition. All steers from Vasse met minimum requirements for fat, with none penalised for dentition. Vasse steers from High- or Low-RFI dams performed in a manner similar to that from High- and Low-Fat dams, respectively, in that the High-RFI group produced fatter carcasses than did the Low-RFI group. Steers reared under low pre-weaning nutrition weighed less at weaning than did those on High-Nutrition, but had higher weight gains after weaning, although insufficient to result in the same carcass weight. The results showed that commercial cattle producers need to be aware of the balance and trade-off among fat breeding value, effect of pre-weaning nutrition and post-weaning growth required to ensure their cattle meet market specifications and to avoid price penalties.


2018 ◽  
Vol 58 (1) ◽  
pp. 80 ◽  
Author(s):  
M. L. Hebart ◽  
J. M. Accioly ◽  
K. J. Copping ◽  
M. P. B. Deland ◽  
R. M. Herd ◽  
...  

Cow bodyweight gain, calf weaning weight, feed intake and maternal productivity of 500 Angus cows, in 64 replicate groups, were measured over three parities at two locations (Struan and Vasse) as part of the Beef CRC Maternal Productivity Project. The cows were sourced as heifers from the top and bottom 10% of BREEDPLAN Rib Fat EBV (High-Fat and Low-Fat), and from High and Low residual feed intake (RFI) selection lines (High-RFI and Low-RFI). Each of the four genotypes were run under High- and Low-Nutrition (measured as feed on offer) at both sites. The High-Fat cows were 7% more efficient at producing weaner calves under Low-Nutrition than were the Low-Fat cows. This was driven primarily by the 4% difference between the lines in weaning rate. When weaning rate differences were accounted for (as covariate), there was no difference between the Fat lines in the efficiency of weaner weight production. When the weight gain of the cow was included as an output in addition to calf weaning weight, there was also no difference between the Fat lines in efficiency. Low-RFI cows were always more efficient at producing weaner calves than were the High-RFI cows. This was primarily driven through a 7% reduction in annual feed intake (across both nutrition treatments). However, the Low-RFI cows were leaner, had 6.3% lower weaning rate and calved on average 5.4 days later than did the High-RFI cows. Furthermore, the largest differences in feed intake were in spring when feed availability is greatest. In the context of the results herein, a balanced breeding program should include selection for improved reproduction and low RFI.


2018 ◽  
Vol 58 (1) ◽  
pp. 33 ◽  
Author(s):  
F. M. Jones ◽  
J. M. Accioly ◽  
K. J. Copping ◽  
M. P. B. Deland ◽  
J. F. Graham ◽  
...  

The pregnancy rate of heifers affects the efficiency and profitability of beef herds. Heifers extreme in rib fatness (Fat) or post-weaning residual feed intake (RFI) estimated breeding values (EBVs) were evaluated for their pregnancy rates at two locations in the southern agricultural regions of Australia (Struan and Vasse) as part of the Beef Cooperative Research Centre Maternal Productivity Project. Heifers divergent in Fat (High-Fat and Low-Fat) had differences in fat depth pre-joining at the 12/13th rib (4.4 mm vs 3.5 mm) and P8 rump site (6.1 mm vs 4.8 mm). This was associated with significant differences in pregnancy rates over a 9-week joining period (91.5% vs 83.0%) and an even larger difference when calculated over a 6-week joining period (77.3% vs 65.0%). Heifers divergent in RFI (Vasse only) also differed in rib fat (7.6 mm vs 6.4 mm) and P8 fat (11.0 vs 9.2 mm), but not significantly in pregnancy rates between the two RFI (High-RFI and Low-RFI) genotypes following a 9-week (92.4% vs 88.5%) or 6-week (81.2% vs 73.7%) joining period. The phenotypic analysis of the Fat and RFI heifers together indicated that weight and fat depth were the largest contributing factors to variation in pregnancy rates, and age and pre-joining weight gain were not significant. These phenotypic characteristics indicated that producers can manage heifers to particular weight and fat combinations to improve heifer conception rates. Associations of BREEDPLAN EBVs with heifer fertility showed that a shorter days-to-calving EBV had the biggest impact (P < 0.001) on heifer pregnancy rates and rib fat and scrotal size EBVs were close to significant (P < 0.10).


2011 ◽  
Vol 51 (3) ◽  
pp. 183 ◽  
Author(s):  
K. A. Donoghue ◽  
P. F. Arthur ◽  
J. F. Wilkins ◽  
R. M. Herd

Angus cattle that had been divergently selected for Low and High post-weaning residual feed intake (RFI) were used in two projects to evaluate early-life reproductive performance and onset of puberty in females. In the first project, data on the 1999-born females (n = 64) were evaluated for weight, subcutaneous fat (P8 fat depth) and reproductive performance over two breeding cycles. These females that were the result of 1.0–2.5 (mean of 1.8) generations of selection, had mean (±s.e.) post-weaning RFI of –0.82 ± 0.19 kg/day and 0.57 ± 0.18 kg/day for the Low and High RFI selection lines, respectively. In the second project, ultrasonography was used to scan the ovaries of the 2008-born heifers (n = 121) on four occasions following weaning. In these heifers the presence of corpus luteum provided evidence of ovulation, and hence the commencement of onset of puberty. The average of the estimated breeding value (EBV) for RFI of the parents of the Low RFI and the High RFI selection line heifers were –0.72 ± 0.05 and 0.37 ± 0.03 kg/day, respectively. In the first project, no significant selection line differences were evident for weight, age at first mating, pregnancy and calving rates (percentage of females that were pregnant, or the percentage that calved out of the total number used for mating), calf birthweight and weight of calf born per female exposed to bull. Females from the Low RFI line had significantly (P < 0.05) lower P8 fat depth relative to their High RFI contemporaries at most of the measurement dates (e.g. 9.2 ± 0.5 versus 12.0 ± 0.5 mm at the start of first mating). Low RFI females also calved significantly (P < 0.05) later in the calving season than High RFI females (35.7 ± 3.0 versus 27.6 ± 2.4 days). The results indicate that there is a delayed pregnancy date during the first mating season leading to a later calving date for the Low RFI heifers. The later first calving date was then maintained at subsequent calving. The later calving, however, did not impact on pregnancy and calving rates. In the second project, it was observed that irrespective of selection line, heifers that had attained onset of puberty had significantly (P < 0.05) greater P8 fat depth than those that had not. Hence the expectation was that, relative to High RFI heifers, the Low RFI heifers with their lower P8 fat, will attain onset of puberty at a slightly older age. This expected trend was observed but the difference was not significant, and further investigations are recommended.


2018 ◽  
Vol 58 (1) ◽  
pp. 55 ◽  
Author(s):  
K. J. Copping ◽  
J. M. Accioly ◽  
M. P. B. Deland ◽  
N. J. Edwards ◽  
J. F. Graham ◽  
...  

This experiment evaluated the productivity of 500 Angus cows that differed in genetic merit for either subcutaneous rib fat depth (Fat) or residual feed intake (RFI) based on estimated breeding values (EBVs) and managed under two levels of nutrition. Reproductive rate over four calving opportunities in mature cows and growth performance of progeny to weaning was assessed. Level of nutrition significantly affected all body composition traits for both Fat and RFI line cows. Cows on High-Nutrition were 14–16% heavier (P < 0.001) than those on Low-Nutrition. Differences in EBVs for fatness were reflected in phenotypic fatness at maturity. High-RFI line cows were fatter for both scanned rump (P8) and rib (RIB) fat depth relative to their Low-RFI contemporaries. Of those cows that were lactating, there was no significant effect of line or nutrition on pregnancy rate or days to calving (DC). There was, however, a trend (P < 0.1) in the Low-Fat line cows towards longer DC compared with the High-Fat line cows. There was no significant effect of either line or nutrition on calf birthweight. Calves with mothers on High-Nutrition were 8% heavier at weaning (P < 0.001) than those on Low-Nutrition. Lower EBVs for RFI was associated with higher 200-day growth EBV and heavier calves at weaning. Current carcass BREEDPLAN EBVs can be used to select for changes in cow body composition if desired. In this experiment, Angus cows selected for lower RFI or with below-average fatness EBV and had raised a calf at every previous opportunity were not compromised in pregnancy rate or DC at maturity under varying nutrition such as can be experienced during normal seasonal conditions in southern Australia. However, selection for lower RFI was associated with lower weaning rate (P < 0.05), which warrants further investigation to confidently predict the implications for commercial cattle production.


2013 ◽  
Vol 91 (10) ◽  
pp. 4669-4678 ◽  
Author(s):  
L. Chen ◽  
F. Schenkel ◽  
M. Vinsky ◽  
D. H. Crews ◽  
C. Li

2001 ◽  
Vol 41 (7) ◽  
pp. 1065 ◽  
Author(s):  
E. C. Richardson ◽  
R. M. Herd ◽  
V. H. Oddy ◽  
J. M. Thompson ◽  
J. A. Archer ◽  
...  

Yearling Angus steer progeny of parents selected for low residual feed intake (RFI; high efficiency) or high RFI (low efficiency) were evaluated for feed intake, growth and differences in body composition. RFI is the difference between actual feed intake and expected feed intake based on an animal’s size and growth over a test period. Individual intakes of a high grain content ration and growth rates were recorded for 140 days and then the steers were slaughtered for measurement of body composition. All internal organs and non-carcass fat depots were removed, weighed and ground for chemical analysis. Carcasses were kept overnight in the chiller and the left half of every carcass physically dissected into retail cuts, and then into total fat, lean and bone. Carcass fat and lean were then combined and ground for chemical analysis. Steers from low RFI parents ate less (P<0.05) than the steers from high RFI parents, for similar rates of growth. Improvement in RFI was accompanied by small changes in body composition towards greater lean and less fat in the progeny of low RFI parents. Correlations of sire estimated breeding values for RFI with end of test whole body chemical protein, chemical fat and a principal component that condensed information on fat and lean body composition at the end of the test, were statistically significant. These confirmed there was a genetic association between body composition and RFI, with fatness being associated with higher RFI (i.e. lower efficiency). However, the correlations were small and suggested that less than 5% of the variation in sire RFI was explained by variation in body composition of their steer progeny. There was no evidence that a difference in the chemical composition of gain over the test explained the greater intake of metabolisable energy (ME) by the high RFI steers. The results suggest that the difference in ME intake following a single generation of divergent selection for RFI was due to metabolic processes rather than to changes in body composition.


Author(s):  
Hadi Esfandyari ◽  
Just Jensen

Abstract Rate of gain and feed efficiency are important traits in most breeding programs for growing farm animals. Rate of gain (GAIN) is usually expressed over a certain age period and feed efficiency is often expressed as residual feed intake (RFI), defined as observed feed intake (FI) minus expected feed intake based on live weight (WGT) and GAIN. However, the basic traits recorded are always WGT and FI and other traits are derived from these basic records. The aim of this study was to develop a procedure for simultaneous analysis of the basic records and then derive linear traits related to feed efficiency without retorting to any approximations. A bivariate longitudinal random regression model was employed on 13,791 individual longitudinal records of WGT and FI from 2,827 bulls of six different beef breeds tested for own performance in the period from 7 to 13 months of age. Genetic and permanent environmental covariance functions for curves of WGT and FI were estimated using Gibbs sampling. Genetic and permanent covariance functions for curves of GAIN were estimated from the first derivative of the function for WGT and finally the covariance functions were extended to curves for RFI, based on the conditional distribution of FI given WGT and GAIN. Furthermore, the covariance functions were extended to include GAIN and RFI defined over different periods of the performance test. These periods included the whole test period as normally used when predicting breeding values for GAIN and RFI for beef bulls. Based on the presented method, breeding values and genetic parameters for derived traits such as GAIN and RFI defined longitudinally or integrated over (parts of) of the test period can be obtained from a joint analysis of the basic records. The resulting covariance functions for WGT, FI, GAIN and RFI are usually singular but the method presented here do not suffer from the estimation problems associated with defining these traits individually before the genetic analysis. All results are thus estimated simultaneously, and the set of parameters are consistent.


Sign in / Sign up

Export Citation Format

Share Document