Integrating fertility preservation and cryo-banking into the conservation of rare and endangered deer species

2020 ◽  
Vol 60 (10) ◽  
pp. 1227
Author(s):  
P. Comizzoli

More than 50 deer species live in diverse ecosystems around the world. Unfortunately, most of them are threatened or endangered because of over-hunting, poaching or habitat destruction. Protection of wild populations (in situ) and management of animal collections in zoos and breeding centres (ex situ) are complementary conservation efforts relying on multidisciplinary approaches. Reproductive biology of deer species is one of the critical areas that still needs to be thoroughly studied to ensure the success of in situ or ex situ programs. Interestingly, there is a vast diversity in reproductive traits within the deer family (from anatomy to breeding-season patterns). On the basis of this fundamental knowledge, adapted reproductive biotechnologies have been developed to enhance reproduction and preserve fertility of individuals. Early works on artificial insemination (AI), in vitro fertilisation (IVF), and germplasm freezing in the more common red deer, sika deer and white-tailed deer have been highly inspiring to projects aiming at saving endangered deer species. A few fawn births following AI or IVF using frozen semen have been reported in wild species (e.g. Eld’s deer, Rucervus eldii thamin); however, assisted reproductive techniques and cryo-banking are currently not integrated into the management of rare and endangered populations. Knowing that many deer populations are rapidly declining in situ and ex situ, there is now an urgent need for better strategies and more fertility preservation options. The objectives of the present article are to review (1) existing reproductive biotechnologies to preserve fertility of different deer species and (2) how to integrate these approaches into the management of rare and endangered populations to address conservation issues.

2007 ◽  
Vol 19 (5) ◽  
pp. 685 ◽  
Author(s):  
Monica A. Stoops ◽  
Jennifer B. Bond ◽  
Helen L. Bateman ◽  
Mark K. Campbell ◽  
Gregory P. Levens ◽  
...  

Cryopreservation of spermatozoa from free-living ocelots (Leopardus pardalis) could benefit their conservation by facilitating gene flow between in situ and ex situ populations without requiring removal of additional cats from the wild. The objective of this study was to investigate three different methods of ocelot sperm cryopreservation to identify the most appropriate technique for use in a field environment. Male ocelots (n = 10), housed in North American zoos, were anaesthetised with tiletamine–zolazepam (7mg kg–1 bodyweight; i.m.) and subjected to a regimented electroejaculation procedure. Recovered semen was evaluated for sperm concentration, motility and morphology and processed for cryopreservation by three methods: (1) pelleting on dry ice, (2) freezing in straws over liquid nitrogen vapour; and (3) freezing in straws in a dry shipper. Frozen samples were thawed and assessed for post-thaw acrosome status, viability, motility over time and ability to fertilise viable domestic cat oocytes. Although several post-thaw sperm parameters varied (P < 0.05) among freezing methods, frozen–thawed ocelot spermatozoa from all treatments showed a similar (P > 0.05) capacity to bind, penetrate and fertilise viable domestic cat oocytes. These findings suggest that spermatozoa collected from male ocelots under field conditions may be frozen in straws either using liquid nitrogen alone or in a charged dry shipper to retain adequate functional competence after thawing for use with assisted reproductive procedures.


Zygote ◽  
2021 ◽  
pp. 1-7
Author(s):  
Luciana Diniz Rola ◽  
Eveline dos Santos Zanetti ◽  
Maite del Collado ◽  
Ellen de Fátima Carvalho Peroni ◽  
José Maurício Barbanti Duarte

Summary In vitro production of embryos has gained prominence as a tool for use in wildlife conservation programmes in situ and ex situ. However, the development of this technique depends on steps that include ovarian stimulation, collection and oocyte maturation. The purpose of this study was to assess the feasibility of an ovarian stimulation protocol for follicular aspiration, the efficiency of videolaparoscopy for follicular aspiration and test a medium for in vitro oocyte maturation for the species Mazama gouazoubira. Five females were submitted to repeated ovarian stimulation (hormone protocol using controlled internal drug release), and estradiol benzoate on D0 and eight injections of follicle-stimulating hormone, once every 12 h, from D4 onwards at 30-day intervals. Fourteen surgical procedures were performed in superstimulated females, resulting in the collection of 94 oocytes and an average of 17.1 ± 9.1 follicles observed, 13.5 ± 6.6 follicles aspirated and 7.2 ± 3.7 oocytes collected per surgery. After collection, the oocytes were submitted to in vitro maturation for 24 h and stained with Hoechst 33342 dye to evaluate their nuclear status; 64.5% of the oocytes reached MII and 16.1% were spontaneously activated by parthenogenesis. The nuclear status of oocytes that did not undergo in vitro maturation was evaluated; 80.9% were found to be immature.


Genetika ◽  
2004 ◽  
Vol 36 (3) ◽  
pp. 221-227
Author(s):  
Jelena Aleksic ◽  
Sasa Orlovic

Principles of the conservation of genetic resources of elms (Ulmus spp) do not differ fundamentally from the general principles accepted for the conservation of genetic resources of other common Noble Hardwoods. Efficient conservation can best be achieved through appropriate combination of in situ and ex situ methods, which have distinct advantages. Besides that, ex situ conservation is employed when emergency measures are needed for rare endangered populations and when populations are too small to be managed in situ (e.g. risks of genetic drift and inbreeding). The aim of our research is ex situ conservation of genetic resources of field elm {Ulmus minor Mill) and European white elm (Ulmus laevis Pall) through establishment of field genebanks. Sampling was conducted in one population of field elm and one population of white elm. Plant material (buds) from 8 trees of field elm and 10 trees of white elm was used for in vitro production of clones. Obtained clones will be used for establishment of field genebanks on the experimental estate of the Institute of Lowland Forestry and Environment.


2020 ◽  
Vol 21 (11) ◽  
Author(s):  
Yupi ISNAINI ◽  
Titien Ngatinem Praptosuwiryo

Abstract. Isnaini Y, Praptosuwiryo TNg. 2020. In vitro spore germination and early gametophyte development of Cibotium barometz (L.) J. Sm. in different media. Biodiversitas 21: 5373-5381. Cibotium barometz (L.) J. Sm. is known as the golden chicken fern and included in Appendix II of CITES. It is an important export commodity for traditional and modern medicine. Globally, populations of this species are under significant pressure due to overexploitation in the wild. In vitro culture is one of the technologies used for ex-situ propagation and conservation of rare and endangered ferns and lycophytes. This study’s objectives were: (i) to observe in vitro spore germination and early gametophyte development of C. barometz, and (ii) to determine the best culture medium for rapid spore germination and early development of the gametophytes. The sterilized spores were sown in half-strength Murashige & Skoog (½MS) basal medium supplemented with combinations of 6-Benzylaminopurine (BAP) and α-Naphthalene acetic acid (NAA). A factorial combination of four BAP concentrations (0, 2, 4, and 6 mg L-1) with four concentrations of NAA (0; 0.01; 0.03 and 0.05 mg L-1) created 16 treatments replicated in a Completely Randomized Design. Spore germination of C. barometz was observed to be Vittaria-type, and its prothallial development was Drynaria-type. Spore germination started 7-14 days after sowing. Young heart-shape gametophytes consisting of 110-240 cells were formed in 45-61 days after sowing. The two best spore culture media for rapid spore germination and development of C. barometz gametophytes were ½ MS with or without 2 mg L-1 BAP.


2020 ◽  
Vol 21 (20) ◽  
pp. 7459
Author(s):  
María Elena González-Benito ◽  
Miguel Ángel Ibáñez ◽  
Michela Pirredda ◽  
Sara Mira ◽  
Carmen Martín

Epigenetic variation, and particularly DNA methylation, is involved in plasticity and responses to changes in the environment. Conservation biology studies have focused on the measurement of this variation to establish demographic parameters, diversity levels and population structure to design the appropriate conservation strategies. However, in ex situ conservation approaches, the main objective is to guarantee the characteristics of the conserved material (phenotype and epi-genetic). We review the use of the Methylation Sensitive Amplified Polymorphism (MSAP) technique to detect changes in the DNA methylation patterns of plant material conserved by the main ex situ plant conservation methods: seed banks, in vitro slow growth and cryopreservation. Comparison of DNA methylation patterns before and after conservation is a useful tool to check the fidelity of the regenerated plants, and, at the same time, may be related with other genetic variations that might appear during the conservation process (i.e., somaclonal variation). Analyses of MSAP profiles can be useful in the management of ex situ plant conservation but differs in the approach used in the in situ conservation. Likewise, an easy-to-use methodology is necessary for a rapid interpretation of data, in order to be readily implemented by conservation managers.


Author(s):  
Marine Deshors ◽  
Olivier Guais ◽  
Virginie Neugnot-Roux ◽  
Xavier Cameleyre ◽  
Luc Fillaudeau ◽  
...  
Keyword(s):  
Ex Situ ◽  

Author(s):  
Jane Muthoni ◽  
Hussein Shimelis ◽  
Rob Melis

Plant genetic resources (PGRs) play an important role in agriculture, environment protection, cultural property and trade; they need to be conserved. There are two fundamental approaches for the conservation of PGRs: in situ and ex situ. In situ conservation is the conservation of ecosystems and natural habitats and the maintenance and recovery of viable populations of species in their natural surroundings. Ex situ preservation is the storage of seeds or plant materials under artificial conditions to maintain their long term viability and availability for use. Genebanks employ seed storage, field collections of living plants and in vitro storage (tissue culture or cryopreservation) for ex situ preservation of PGR. Storage of orthodox seeds, which are tolerant to low moisture content and low temperatures at appropriate temperature and humidity, is the most convenient ex situ conservation method. Plants that produce recalcitrant seeds or non-viable seeds are conserved in field genebanks as well as in-vitro in slow growth media for short-to-medium term and cryopreservation in liquid nitrogen at -1960C for long-term periods. Cryopreservation is very expensive and needs trained personnel; this could explain why this method is rarely used for conservation of plant genetic resources in most developing countries. Potato tubers are bulky and highly perishable; the crop is generally conserved as clones either in field genebanks (with annual replanting), in-vitro conservation in slow growth media for short-to-medium term and cryopreservation for long term. Field genebanks are expensive to maintain and the crop is exposed to many dangers; hence, cryopreservation is the only feasible method for long term conservation. However, given the high cost of cryopreservation, long-term conservation of potato genetic resources is poorly developed in most resource-poor countries leading to high rates of genetic erosion. This paper looks into the various methods that that can be applied to conserve potato genetic resources and the status of conservation of potatoes in major genebanks and some countries.


2006 ◽  
Vol 18 (3) ◽  
pp. 373 ◽  
Author(s):  
Khongsak Thiangtum ◽  
William F. Swanson ◽  
JoGayle Howard ◽  
Wanchai Tunwattana ◽  
Dakara Tongthainan ◽  
...  

Conservation of the fishing cat, a threatened south-east Asian felid, could benefit from effective ex situ genetic management and breeding programmes, including the use of assisted reproduction. The aims of the present study were to: (1) characterise basal seminal traits of fishing cats in Thailand zoos; and (2) investigate the effect of cryopreservation on sperm motility, acrosomal integrity and in vitro function. Seminal traits were evaluated in electroejaculates collected from eight males. Spermatozoa were diluted in n-tris(hydroxymethyl)-methyl-2-aminoethanesulfonic acid Tris (TEST)-yolk buffer (TYB) without glycerol, then diluted further with TYB with glycerol (4% final concentration) at either 25°C or after slow cooling to 5°C and frozen in straws over liquid nitrogen vapour. After thawing, sperm function was assessed by insemination of viable domestic cat oocytes. Fishing cat ejaculates averaged (± s.e.m.) 43.6 ± 14.2 × 106 motile spermatozoa with 33.5 ± 6.8% normal sperm morphology. Semen processing had a negligible effect (P > 0.05) on sperm motility and acrosomal integrity, but values were reduced (P < 0.05) after thawing. All thawed samples fertilised domestic cat oocytes, with 62.1% (36/58) of mature oocytes cleaving. Glycerol addition at 5°C resulted in higher (P < 0.05) post-thaw motility and intact acrosomes than glycerol addition at 25°C. In conclusion, good-quality ejaculates can be obtained from Thai fishing cats and their spermatozoa exhibit adequate function after cryopreservation for in vitro fertilisation procedures.


Healthcare ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1657
Author(s):  
Catherine Meads ◽  
Laura-Rose Thorogood ◽  
Katy Lindemann ◽  
Susan Bewley

Same-sex female couples who wish to become pregnant can choose donor insemination or in-vitro fertilization (IVF)—a technique intended for infertile women. In general, women in same-sex female partnerships are no more likely to be infertile than those in opposite sex partnerships. This article investigates data available from the Government Regulator of UK fertility clinics—the Human Fertilization and Embryology Authority, which is the only data available worldwide on same-sex female couples and their fertility choices. IVF is increasing both in absolute numbers and relative proportions year on year in the UK, compared to licensed donor insemination for same-sex female couples. As IVF has greater human and financial costs than donor insemination, policies should not encourage it as the first choice for fertile women requiring sperm. Commercial transactions are taking place where fertile lesbians receive cut price, and arguably unnecessary, IVF intervention in exchange for selling their eggs to be used for other infertile customers. If women are not told about the efficacy of fresh vs. frozen semen, and the risks of egg ‘sharing’ or intra-couple donation, exploitation becomes possible.


HortScience ◽  
2012 ◽  
Vol 47 (1) ◽  
pp. 84-87 ◽  
Author(s):  
Milorad Vujičić ◽  
Aneta Sabovljević ◽  
Jasmina Šinžar-Sekulić ◽  
Marijana Skorić ◽  
Marko Sabovljević

The high mountain pottioid moss Molendoa hornschuchiana (Hook) Lindb. ex Limpr. is a very rare and critically endangered bryophyte species in Europe in need for ex situ conservation. A 25-year-old herbarium sample was used to revive and propagate this species for further reintroduction and introduction to potential natural habitats. The reviving of “dead” herbarium specimen was achieved by disposing of axenical organisms as well as adjusting condition for developing secondary protonema, bud inductions, and optimization of gametophyte propagation in vitro condition.The influence of exogenously added growth regulators on the morphogenesis of this species was studied. The plants were cultured in the two basic types of media, viz., BCD and half-strength Murashige and Skoog (MS) supplemented with different concentrations (0.01–0.3 μM) of indole-3-butyric acid (IBA) and N6-benzyladenine (BA) under a 16-h photoperiod. The influence of growth regulators on gametophores multiplication in vitro as well as on protonemal diameter was recorded. Well-developed gametophores were obtained on BCD medium, whereas on half-strength MS medium, secondary protonema was produced, both on hormone-free and supplemented substrate exclusively. Based on multiplication index in vitro, maximum development of gametophores was realized on BCD medium supplemented with 0.3 μM IBA and 0.1 μM BA. However, the widest diameter of secondary protonema was obtained on BCD medium enriched with low concentration of both BA (0.01 and 0.03 μM) and constant concentration of IBA (0.03 μM). Chemical names used: indole-3-butyric acid (IBA), N6-benzyladenine (BA), Murashige and Skoog medium (MS).


Sign in / Sign up

Export Citation Format

Share Document