Reproductive performance of northern Australia beef herds. 8. Impact of rainfall and wild dog control on percentage fetal and calf loss

2020 ◽  
Author(s):  
Lee R. Allen ◽  
Tamsin S. Barnes ◽  
Geoffry Fordyce ◽  
Kieren D. McCosker ◽  
Michael R. McGowan
Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 849
Author(s):  
Aitor Fernandez-Novo ◽  
Sergio Santos-Lopez ◽  
Jose Luis Pesantez-Pacheco ◽  
Natividad Pérez-Villalobos ◽  
Ana Heras-Molina ◽  
...  

In beef herds, increasing animal welfare, improving reproductive performance and easing animal management are key goals in farm economics. We explored whether delaying the removal of the intravaginal progesterone device by 24 h in heifers synchronized with a 5d Co-synch 72-h protocol could improve reproductive efficiency of fixed-time artificial insemination (FTAI). In experiment 1, we examined the total synchronization rate (TSR) in cycling Holstein heifers. Heifers (13.4 ± 0.69 mo.) were randomly assigned to the standard 5d Co-synch 56-h protocol (5dCo56; n = 10), 5d Co-synch 72-h (5dCo72; n = 17), or the modified 5d Co-synch 72-h protocol, in which removal of the progesterone device was delayed by 24 h (6dCo48; n = 19). In experiment 2, 309 cycling beef heifers on 18 commercial farms were subjected to the 5d Co-synch 72-h or 6-d Co-synch 48-h protocol and conception rate (CR) studied. In experiment 1, the three protocols led no differences on TSRs of 80.0% (5dCo56), 88.2% (5dCo72), and 89.5% (6dCo48). In experiment 2, the CR from the beef heifers, observed during two consecutive reproductive seasons did not differ: 59.7% for 5dCo72 and 62.0% for 6dCo48 (p = 0.907). Therefore, delaying removal by 24 h provides satisfactory results without reducing reproductive efficiency of heifers.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2096 ◽  
Author(s):  
Aitor Fernandez-Novo ◽  
Sonia S. Pérez-Garnelo ◽  
Arantxa Villagrá ◽  
Natividad Pérez-Villalobos ◽  
Susana Astiz

Researchers have contributed by increasing our understanding of the factors affecting reproduction in beef, mainly physical health and nutrition aspects, which have been main concerns during decades. Animal welfare is of outmost relevance in all animal production systems and it is strongly associated to stress. Stress responses involve endocrine, paracrine and neural systems and the consequences of this stress on the reproductive efficiency of specifically, beef cattle and bulls, need to be highlighted. We, therefore, describe the fundamentals of stress and its quantification, focusing in beef herds, reviewing the highly valuable pieces of research, already implemented in this field. We examine major factors (stressors) contributing to stress in beef cattle and their effects on the animals, their reproductive performance and the success of reproductive biotechnologies. We include terms such as acclimatization, acclimation or temperament, very relevant in beef systems. We examine specifically the management stress due to handling, social environment and hierarchy or weaning effects; nutritional stress; and thermal stress (not only heat stress) and also review the influence of these stressors on reproductive performance and effectiveness of reproductive biotechnologies in beef herds. A final message on the attention that should be devoted to these factors is highlighted.


EDIS ◽  
2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Mario Binelli ◽  
Angela Maria Gonella-Diaza ◽  
Thiago Martins ◽  
Cecilia C. Rocha ◽  
Felipe A.C.C. Silva ◽  
...  

This publication reviews the basic calculations of reproductive performance and reports the reproductive performance of two University of Florida beef herds. Written by Mario Binelli, Angela M. Gonella-Diaza, Thiago Martins, Cecilia C. Rocha, Felipe A. C. C. Silva, Federico Tarnonsky, Sergio Roskopf, Owen Rae, Danny Driver, Nicolas DiLorenzo, Jose Dubeux, and David Thomas, and published by the UF/IFAS Department of Animal Sciences, May 2021.


2014 ◽  
Vol 54 (1) ◽  
pp. 74 ◽  
Author(s):  
D. J. Johnston ◽  
N. J. Corbet ◽  
S. A. Barwick ◽  
M. L. Wolcott ◽  
R. G. Holroyd

Genetic correlations of young bull and heifer puberty traits with measures of early and lifetime female reproductive performance were estimated in two tropical beef cattle genotypes. Heifer age at puberty was highly (rg = –0.71 ± 0.11) and moderately (rg = –0.40 ± 0.20) genetically correlated with pregnancy rate at first annual mating (mating 1) and lifetime annual calving rate, respectively in Brahman (BRAH). In Tropical Composite (TCOMP), heifer age at puberty was highly correlated with reproductive outcomes from the first re-breed (mating 2), mainly due to its association with lactation anoestrous interval (rg = 0.72 ± 0.17). Scrotal circumference were correlated with heifer age at puberty (rg = –0.41 ± 0.11 at 12 months in BRAH; –0.30 ± 0.13 at 6 months in TCOMP) but correlations were lower with later female reproduction traits. Bull insulin-like growth factor-I was correlated with heifer age at puberty (rg = –0.56 ± 0.11 in BRAH; –0.43 ± 0.11 in TCOMP) and blood luteinising hormone concentration was moderately correlated with lactation anoestrous interval (rg = 0.59 ± 0.23) in TCOMP. Semen quality traits, including mass activity, motility and percent normal sperm were genetically correlated with lactation anoestrus and female lifetime female reproductive traits in both genotypes, but the magnitudes of the relationships differed with bull age at measurement. Preputial eversion and sheath scores were genetically associated with lifetime calving and weaning rates in both genotypes. Several of the early-in-life male and female measures examined were moderately to highly genetically correlated with early and lifetime female reproduction traits and may be useful as indirect selection criteria for improving female reproduction in tropical breeds in northern Australia.


Sign in / Sign up

Export Citation Format

Share Document