The influence of spatial arrangement on grain yield of wheat

1983 ◽  
Vol 34 (2) ◽  
pp. 99 ◽  
Author(s):  
BA Auld ◽  
DR Kemp ◽  
RW Medd

In four experiments, conducted over three contrasting seasons on the central western slopes of New South Wales, the grain yields of three wheat cultivars (Condor, Durati and Phoenix) sown in rhomboidal, square and rectangular patterns were compared with yields from traditionally sown (Poisson distribution along rows 180 mm apart) and broadcast arrangements. Square sowing resulted in significant (P < 0.05) yield increases (due to an increase in ear number) over rectangular arrangements in one experiment at three sowing densities 75,150 and 200 plants m-2. In two drier years there was no significant effect of arrangement at any density (40-400 plants m-2) in any one experiment. There was, however, a consistent significant (P < 0.05) trend over all experiments over 3 years, described by a response surface, of decreasing yield with increasing rectangularity as density was decreased. It is postulated that this was due to reduced ability of the plants to utilize available space. Traditional (sown in three seasons) and broadcast (sown in one season) arrangements produced yields which were not significantly (P > 0.05) different from the highest yielding treatments. It was concluded that there is no advantage in changing from the traditional sowing pattern to any precise geometric pattern. However, in precision sowing, rectangular patterns will result in lower yields than square patterns as density decreases from 200 plants m-2.

1985 ◽  
Vol 25 (4) ◽  
pp. 922 ◽  
Author(s):  
D Lemerle ◽  
AR Leys ◽  
RB Hinkley ◽  
JA Fisher

Twelve spring wheat cultivars were tested in southern New South Wales for their tolerances to the recommended rates and three times the recommended rates of trifluralin, pendimethalin, tri-allate and chlorsulfuron. Recommended rates of these herbicides did not affect the emergence or grain yield of any cultivar. However, differences between cultivars in their tolerances to trifluralin, pendimethalin and chlorsulfuron at three times the recommended rate were identified. The extent of the reduction in emergence and/or grain yield varied with herbicide and season, and there was also a herbicidexseason interaction. Durati, Songlen and Tincurrin were the most susceptible cultivars to trifluralin, and Teal was the most tolerant. Yield losses from trifluralin were more severe in 1979 than in 1980 or 1981. The differential between cultivars treated with pendimethalin was smaller and more variable; Tincurrin was the only cultivar with a yield reduction in more than one season. Durati, Songlen and Shortim were the only cultivars affected by chlorsulfuron. A reduction in crop emergence of a cultivar treated with trifluralin or pendimethalin did not correlate consistently with any grain yield loss, and reductions in emergence were always greater than yield loss.


2009 ◽  
Vol 49 (10) ◽  
pp. 769 ◽  
Author(s):  
K. G. McMullen ◽  
J. M. Virgona

In southern New South Wales, Australia, grazing wheat during the vegetative and early reproductive growth stages (typically during winter) can provide a valuable contribution of high quality feed during a period of low pasture growth. This paper reports results from a series of experiments investigating the agronomic management of grazed wheats in southern NSW. The effect of sowing date and grazing on dry matter production and subsequent grain yield of a range of wheat cultivars was measured in five experiments in 2004 and 2005. In all experiments, results were compared with ungrazed spring wheat (cv. Diamondbird). Grain yield of the best winter cultivar was either the same or significantly greater than the spring cultivar in each of the five experiments. Within the winter wheat cultivars, there was significant variation in grain yield, protein content and screenings, depending on site and year with the cultivar Marombi out-yielding all others. Interestingly, this cultivar usually had the least dry matter post-grazing but the greatest dry matter by anthesis of the winter wheats. Generally, if sowing of the winter wheat was delayed, then the effects on yield were small or non-existent. The results are discussed with respect to the benefits of incorporating grazing cereals into cropping programs in the medium rainfall zone of southern Australia.


1965 ◽  
Vol 5 (18) ◽  
pp. 317 ◽  
Author(s):  
RR Storrier

Ammonium sulphate was added at rates up to 150 lb nitrogen an acre to a soil containing 149 lb mineral nitrogen per acre-18 Inches at sowing, and the seasonal distribution of mineral nitrogen in the soil, nitrogen uptake, and yield of wheat was measured in a better than average season. Some of the applied fertilizer, at all rates of application, was taken up by the crop and resulted in increased dry matter yield and plant nitrogen content at jointing. However, at harvest, total dry matter and grain yield were depressed at all levels of fertilizer application. Grain yield was depressed from 40.5 to 30.5 bushels an acre with the addition of 150 lb nitrogen an acre.Yield potential, as represented by tiller production and spikelets per ear, was increased by fertilizer application, but ear number, grains per ear, and weight per grain, were depressed. Grain number per ear was the principle component of yield under the experimental conditions. Moisture stress and competition for light were responsible for an increase in tiller mortality, which resulted in the depression in ear number with increasing nitrogen supply. Inter-tiller competition for available moisture during the pre-anthesis period caused a decrease in grain number per ear, from 19.3 in the control to 16.6 at the maximum fertilizer rate. It is suggested that inter-tiller competition for available moisture during the pre-anthesis period is an important factor in determining potential grain yield in wheat grown on high fertility soils in southern New South Wales.


1974 ◽  
Vol 14 (66) ◽  
pp. 93 ◽  
Author(s):  
AD Doyle ◽  
H Marcellos

The influence of variation in time of sowing on grain yield in five wheat cultivars has been studied in the North West Slopes of New South Wales over the period 1967 to 1971. Highest grain yields were obtained when wheat was sown at the end of June so as to flower at the end of the first week in October. Reductions in relative grain yield of 5 to 7 per cent were recorded for each week that sowing was delayed after the end of June, or 9 to 13.5 per cent for each week that flowering was delayed after the first week in October. Lower grain yields from late sown crops were associated with lower leaf area duration after flowering which could account for 69 per cent of the variation in grain yield. Lower grain yields in early sown crops were associated with lower ear numbers which could be ascribed in part to the influence of frosts.


2015 ◽  
Vol 66 (4) ◽  
pp. 349 ◽  
Author(s):  
Julianne M. Lilley ◽  
Lindsay W. Bell ◽  
John A. Kirkegaard

Recent expansion of cropping into Australia’s high-rainfall zone (HRZ) has involved dual-purpose crops suited to long growing seasons that produce both forage and grain. Early adoption of dual-purpose cropping involved cereals; however, dual-purpose canola (Brassica napus) can provide grazing and grain and a break crop for cereals and grass-based pastures. Grain yield and grazing potential of canola (up until bud-visible stage) were simulated, using APSIM, for four canola cultivars at 13 locations across Australia’s HRZ over 50 years. The influence of sowing date (2-weekly sowing dates from early March to late June), nitrogen (N) availability at sowing (50, 150 and 250 kg N/ha), and crop density (20, 40, 60, 80 plants/m2) on forage and grain production was explored in a factorial combination with the four canola cultivars. The cultivars represented winter, winter × spring intermediate, slow spring, and fast spring cultivars, which differed in response to vernalisation and photoperiod. Overall, there was significant potential for dual-purpose use of winter and winter × spring cultivars in all regions across Australia’s HRZ. Mean simulated potential yields exceeded 4.0 t/ha at most locations, with highest mean simulated grain yields (4.5–5.0 t/ha) in southern Victoria and lower yields (3.3–4.0 t/ha) in central and northern New South Wales. Winter cultivars sown early (March–mid-April) provided most forage (>2000 dry sheep equivalent (DSE) grazing days/ha) at most locations because of the extended vegetative stage linked to the high vernalisation requirement. At locations with Mediterranean climates, the low frequency (<30% of years) of early sowing opportunities before mid-April limited the utility of winter cultivars. Winter × spring cultivars (not yet commercially available), which have an intermediate phenology, had a longer, more reliable sowing window, high grazing potential (up to 1800 DSE-days/ha) and high grain-yield potential. Spring cultivars provided less, but had commercially useful grazing opportunities (300–700 DSE-days/ha) and similar yields to early-sown cultivars. Significant unrealised potential for dual-purpose canola crops of winter × spring and slow spring cultivars was suggested in the south-west of Western Australia, on the Northern Tablelands and Slopes of New South Wales and in southern Queensland. The simulations emphasised the importance of early sowing, adequate N supply and sowing density to maximise grazing potential from dual-purpose crops.


2003 ◽  
Vol 43 (1) ◽  
pp. 71 ◽  
Author(s):  
M. K. Conyers ◽  
C. L. Mullen ◽  
B. J. Scott ◽  
G. J. Poile ◽  
B. D. Braysher

The cost of buying, carting and spreading limestone, relative to the value of broadacre crops, makes investment in liming a questionable proposition for many farmers. The longer the beneficial effects of limestone persist, however, the more the investment in liming becomes economically favourable. We re-established previous lime trials with the aim of measuring the long-term effects of limestone on surface acidity (pH run-down), subsurface acidity (lime movement) and grain yield. The study made use of experiments where there was adequate early data on soil chemical properties and cereal yields. We report data from 6 trials located at 4 sites between Dubbo and Albury in New South Wales. The rate of surface soil (0–10 cm) pH decline after liming was proportional to the pH attained 1 year after liming. That is, the higher the pH achieved, the more rapid the rate of subsequent pH decline. Since yields (product removal) and nitrification (also acid producing) may both vary with pH, the post-liming pH acts as a surrogate for the productivity and acid-generating rate of the soil–plant system. The apparent lime loss rate of the surface soils ranged from the equivalent of nearly 500 kg limestone/ha.year at pH approaching 7, to almost zero at pH approaching 4. At commercial application rates of 2–2.5 t/ha, the movement of alkali below the layer of application was restricted. However, significant calcium (Ca) movement sometimes occurred to below 20 cm depth. At rates of limestone application exceeding the typical commercial rate of 2.5 t/ha, or at surface pH greater than about 5.5, alkali and Ca movement into acidic subsurface soil was clearly observed. It is therefore technically feasible to ameliorate subsurface soil acidity by applying heavy rates of limestone to the soil surface. However, the cost and risks of this option should be weighed against the use of acid-tolerant cultivars in combination with more moderate limestone rates worked into the surface soil.There was a positive residual benefit of limestone on cereal grain yield (either barley, wheat, triticale, or oats) at all sites in both the 1992 and 1993 seasons. While acid-tolerant cultivars were less lime responsive than acid-sensitive ones, the best yields were generally obtained using a combination of liming and acid-tolerant cultivars.The long-term residual benefits of limestone were shown to extend for beyond 8–12 years and indicate that liming should be profitable in the long term.


1992 ◽  
Vol 32 (4) ◽  
pp. 465 ◽  
Author(s):  
AD Doyle ◽  
RW Kingston

The effect of sowing rate (10-110 kg/ha) on the grain yield of barley (Hordeum vulgare L.) was determined from a total of 20 field experiments conducted in northern New South Wales from 1983 to 1986. Effects of sowing rate on kernel weight and grain protein percentage were also determined from 12 experiments conducted in 1985 and 1986. Two barley varieties were tested each year. In all years fallow plus winter rainfall was equal to or greater than average. Grain yield increased with higher sowing rates in most experiments, with the response curve reaching a plateau above 60-70 kg/ha. For 13 of the 40 variety x year combinations, grain yield fell at the highest sowing rates. Only in an experiment where lodging increased substantially with higher sowing rates was there a reduction in yield at a sowing rate of 60 kg/ha. The average sowing rate for which 5 kg grain was produced per kg of seed sown was 63 kg/ha. Grain protein percentage usually fell, and kernel weight invariably fell, with increasing sowing rate. Increasing sowing rates from the normal commercial rate of 35 kg/ha to a rate of 60 kg/ha typically increased grain yields by 100-400 kg/ha, decreased kernel weight by 0.4-2.0 mg, and decreased grain protein by up to 0.5 percentage points. In no case was the grain weight reduced to below malting specifications. It was concluded that sowing rates for barley in northern New South Wales should be increased to about 60 kg/ha.


1995 ◽  
Vol 35 (1) ◽  
pp. 93 ◽  
Author(s):  
RD FitzGerald ◽  
ML Curll ◽  
EW Heap

Thirty varieties of wheat originating from Australia, UK, USA, Ukraine, and France were evaluated over 3 years as dual-purpose wheats for the high rainfall environment of the Northern Tablelands of New South Wales (mean annual rainfall 851 mm). Mean grain yields (1.9-4.3 t/ha) compared favourably with record yields in the traditional Australian wheatbelt, but were much poorer than average yields of 6.5 t/ha reported for UK crops. A 6-week delay in sowing time halved grain yield in 1983; cutting in spring reduced yield by 40% in 1986. Grazing during winter did not significantly reduce yields. Results indicate that the development of wheat varieties adapted to the higher rainfall tablelands and suited to Australian marketing requirements might help to provide a useful alternative enterprise for tableland livestock producers.


1984 ◽  
Vol 24 (125) ◽  
pp. 236
Author(s):  
GK McDonald ◽  
BG Sutton ◽  
FW Ellison

Three winter cereals (wheat varieties Songlen and WW 15, triticale variety Satu) were grown after cotton or summer fallow under three levels of applied nitrogen (0, 100 and 200 kg N/ha) at Narrabri, New South Wales. The cereals were sown on August 7, 1980 and growing season rainfall was supplemented by a single irrigation. Leaf area, total shoot dry matter production and ears per square metre were lower after cotton than after summer fallow, while grain yields of cereals sown immediately after cotton were 33% lower than those sown after fallow. Adding nitrogen increased leaf area, dry matter and grain yields of crops grown after cotton and fallow, but significant increases were not obtained with more than 100 kg/ha of applied nitrogen. Crops grown after cotton required an application of 100 kg N/ha for leaf and dry matter production at anthesis to equal that of crops grown after fallow with no additional nitrogen. The corresponding cost to grain yield of growing cotton was equivalent to 200 kg N/ha. The low grain yield responses measured in this experiment (1 8 and 10% increase to 100 kg N/ha after cotton and fallow, respectively) were attributed to the combined effects of late sowing, low levels of soil moisture and loss, by denitrification, of some of the applied nitrogen. The triticale, Satu, yielded significantly less than the two wheats (1 99 g/m2 for Satu c.f. 255 and 286 g/m2 for Songlen and WW 15, respectively), and did not appear to be a viable alternative to wheat in a cotton rotation.


1963 ◽  
Vol 3 (10) ◽  
pp. 190 ◽  
Author(s):  
JD Colwell

The usefulness of five contrasting methods of soil analysis for estimating the phosphorus fertilizer requirements of wheat in southern New South Wales has been investigated, using yield data provided by 27 field experiments. Because the level of yield of wheat is strongly affected by seasonal environmental conditions poor correlations are obtained between soil analysis and absolute or relative yield of wheat, Much better and often significant correlations are obtained between soil analysis and the absolute increase in yield from fertilizer application. The best correlations were obtained with an 0.5M NaHCO3 extraction of soil phosphorus. A regression response surface calculated from these relationships provides a method for making direct estimates of fertilizer requirements for maximum economic return to farmers under average climatic conditions. The precision of these estimates is limited more by the flatness of the response surface and uncontrolled variation in the field data, than by inadequacies in the representation of available phosphorus by the NaHCO3 analysis.


Sign in / Sign up

Export Citation Format

Share Document