The effects of anthelmintic treatment and season on the quantity and quality of wool grown by Merino sheep

1983 ◽  
Vol 34 (5) ◽  
pp. 557 ◽  
Author(s):  
NJ Barton ◽  
CJ Brimblecombe

Groups of 30 Merino weaner sheep were grazed in East Gippsland, Vic., and subjected to one of four anthelmintic programs during the 12-month period from December 1977. They were treated with thiabendazole either weekly (W), nine times (H), three times (L) or once (S). These programs resulted in marked differences in the degree of parasitism between the groups. Over the 12 months, parasites had no significant effect on yield, staple length or crimp frequency. However, compared with the wool from sheep treated weekly, greasy wool production was depressed by 13, 22 and 20% respectively in sheep given nine, three or one anthelmintic dose. Fibre diameter was also reduced. Dyebands were used to delineate wool grown during summer, autumn, winter and spring. Where parasite burdens were minimized (W group), wool growth, fibre diameter and rate of staple growth increased each season throughout the year. There was little increase in these characters in the other three groups until the spring, and wool growth and fibre diameter were significantly less than that of the W sheep in all but the initial summer season. Wool growth:fibre volume ratios indicated that sheep continued to initiate new fibres at least until the end of summer, when they were 9 months old. The subsequent depression in the wool growth of sheep dosed at less than weekly intervals provides further evidence of the deleterious effects parasites may have on the production of young sheep, even where anthelmintic is administered fairly frequently.


1959 ◽  
Vol 53 (3) ◽  
pp. 369-373 ◽  
Author(s):  
N. W. Godfrey ◽  
D. E. Tribe

1. An experiment was carried out to determine the effect of L-thyroxine implantation upon the wool production and live-weight change of Corriedale and Suffolk × Border Leicester-Merino sheep.2. Groups fed hay in restricted amounts gave approximately 12% more wool when treated with thyroxine. Since there was no change in fibre diameter, this was presumably due to an increase in staple length.3. Groups fed hay ad lib. gave no significant increase in wool production when treated with thyroxine, nor did their rate of food consumption alter. Their level of wool production over the 5-month period was approximately the same as that of the thyroxine treated, restricted fed, sheep.4. All thyroxine-treated groups lost approximately 10% of their live weight. This was in the nature of a steady decrease from the second to the seventh week after treatment. Live weights then remained at about the same level for a further 8–10 weeks when they commenced to return gradually to their original weights.



1975 ◽  
Vol 15 (73) ◽  
pp. 159 ◽  
Author(s):  
PA Kenney ◽  
IF Davis

A study was made during a three year period (1 968-1 970) of wool production by a flock of 540 ewes grazing annual pasture at Werribee, Victoria. The ewes were stocked at three rates (5, 7 1/2 and 10 ewes ha-1) and lambed between July 6 and August 20 or between September 10 and October 29 each year. Fibre diameter and length of wool samples were measured in 1968, 1969 and 1970 ; in 1970 growth of greasy wool was calculated from staples of dye-banded wool. Wool growth was reduced in all ewes during late pregnancy and early lactation but was not affected during late lactation in ewes lambing in September. The proportion of tender fleeces from all ewes was greater in 1970 and the weight of fleeces from only those ewes bearing single lambs was less in all years for ewes lambing in July than for ewes lambing in September. More ewes were barren and fewer ewes had twins in July and consequently the mean fleece weights of all ewes from both groups were similar. Fleeces from ewes stocked at 10 ha-1 were lighter, shorter and finer than fleeces from ewes stocked at 5 and 7 1/2 ha-1, but the proportion of tender fleeces did not differ between the groups. Wool production of ewes stocked at 5 and 7 1/2 ha-1 increased from 1968 to 1970, whereas that of ewes at 10 ha-1 did not. This was associated with differences in pasture availability and composition. At 10 ewes ha-1 less pasture was present in winter and spring in 1970 than in 1968, whereas at the other stocking rates it was greater. In 1970 the density of weeds in autumn was greater and in spring more silver grass (Vulpia spp.) and less brome grass (Bromus spp.) was available at the high stocking rate.



1976 ◽  
Vol 27 (1) ◽  
pp. 163 ◽  
Author(s):  
DH White ◽  
BJ McConchie

The wool characteristics of Merino wethers were measured for 6 years in a stocking rate experiment. The decline in fleece weight due to increasing stocking rate from 4.9 to 12.4 sheep per hectare was usually accompanied by a reduction in fibre diameter and staple length and an increase in staple crimp frequency. The magnitude of these responses differed considerably between years; in one year clean fleece weight was reduced by 50%, with an associated reduction of 5 µm in mean fibre diameter and one of 2 cm in staple length. In four of the six years of the experiment, variation in fibre diameter accounted for at least 50% of the variation in wool production between stocking rate treatments. The relationships between clean fleece weight and fibre diameter were similar between years, mean fibre diameter being reduced by about 1.8 �m for each kilogram reduction in clean fleece weight. Fibre diameter is the major determinant of wool price, and this information should improve the prediction of economic responses to changes in stocking rate.



2006 ◽  
Vol 57 (8) ◽  
pp. 867 ◽  
Author(s):  
R. W. Kelly ◽  
J. C. Greeff ◽  
I. Macleod

In commercial Merino farming, a major determinant of profitability is quantity and quality of wool production. We tested the hypothesis that the level of feed restriction commonly encountered by autumn/early winter lambing Merino ewes in southern Australia was sufficient to have a detrimental effect on their progeny’s lifetime wool production. Two periods of feed restriction of the dams were tested, viz. from day 50 to 140 of gestation (Expt 1), and from day 50 of pregnancy to weaning at 12 weeks of age (Expt 2). In order to reduce the numbers of experimental animals required, identical twin lambs were produced by cloning embryos. There was a total of 35 and 22 pairs of clones in Expts 1 and 2 that were recorded to 6.4 and 4.4 years of age, respectively. In Expt 1 it was estimated (i.e. conceptus-free weight) that the submaintenance (Sub-M) ewes lost 18 kg in weight compared with 9 kg by the Control (C) ewes over the period of differential feeding. In Expt 2 the Sub-M ewes lost 10 kg during pregnancy and 10 kg during lactation, compared with a loss of 3 kg and a gain of 4 kg over the same period in the C ewes. Gestation length was 1.3 days shorter (P < 0.01) in the Sub-M than C ewes in Expt 1. Birthweights of the Sub-M lambs were 0.5 kg lighter than the C lambs in Expts 1 (P < 0.01) and 2 (P < 0.05). At 12 weeks of age, liveweights of the lambs in the Sub-M and C treatments were 24.2 and 25.9 kg in Expt 1 (P < 0.01) and 14.0 and 25.0 kg in Expt 2 (P < 0.001). Corresponding liveweights at 4 months of age were 30.9 and 32.5 kg (P < 0.01) and 19.9 and 29.7 kg (P < 0.001), the Sub-M animals producing less clean wool (0.1 and 0.4 kg, P < 0.01 and < 0.001, Expts 1 and 2, respectively), that was finer in Expt 2 (2.7 μm, P < 0.001) than their C counterparts. Throughout the rest of the study the Sub-M animals in Expt 2 (but not Expt 1) were on average 3.2 kg lighter (P ranging from < 0.05 to < 0.001) than C animals. In both experiments the ratio of secondary to primary wool-producing follicles was lower (1.1–2.6 units, P < 0.001) in the Sub-M than C animals. These differences led to (P < 0.05) lower significantly adult clean wool production of 0.17 kg (Expt 1) and 0.24 kg (Expt 2) per annum. There was no significant interaction between nutritional treatment and age of the animal for clean wool production. Within experiments there were no significant differences between nutritional treatments in any of the wool quality measurements. However, when fibre diameter data for both experiments were combined for 3.4 and 4.4 years of age, the Sub-M animals were significantly broader (0.3 μm, P < 0.01) when compared with the C animals. We conclude that Sub-M feeding of the pregnant ewe will permanently affect liveweight, the wool follicle population, and wool production and quality, in Merino sheep. Extension of the period of under feeding into lactation (Expt 2) appears to increase the amplitude of the differences in young animals, which is largely overcome by the time the animal reaches 2.4 years of age.



1997 ◽  
Vol 37 (3) ◽  
pp. 303 ◽  
Author(s):  
F. M. Foster ◽  
R. B. Jackson ◽  
D. L. Hopkins ◽  
R. Corkrey

Summary. Male, fine wool Merino sheep which had been subjected to different methods of castration as lambs were assessed from 22 to 46 months of age for their suitability for wool production, their tolerance to posthitis and their carcass characteristics. Hemi-castrates produced significantly (P<0.001) more clean wool than induced cryptorchids of a similar fibre diameter. Induced cryptorchids and hemi-castrates were significantly (P<0.05) heavier than wethers. Partial hemi-castrates and induced cryptorchids had significantly (P<0.001) heavier and leaner carcasses (lower GR measurement) than wethers and testosterone-treated wethers. Induced cryptorchidism and hemi-castration proved to be effective means of reducing the prevalence of posthitis such that as the degree of castration decreased the proportion of animals with higher posthitis scores decreased (P<0.001). Testosterone levels in induced cryptorchids (1.01 ng/mL) and hemi-castrates with partial reduction of the parenchyma (0.83 ng/mL) were similar, whereas hemi-castrates with complete reduction of the parenchyma in the 1 remaining testicle had a significantly (P<0.001) lower level (0.32 ng/mL) and significantly (P<0.001) lighter testes. Development of horns and obvious scrotums by induced cryptorchids and hemi-castrates with partial reduction of the parenchyma in the 1 remaining testicle attracted penalty rates at shearing and slaughter. Some induced cryptorchids and hemi-castrates exhibited masculine behaviour, but they were unlikely to be fertile because although spermatozoa were present they were abnormal and/or non-motile. Hemi-castrates with full reduction of the parenchyma in the 1 remaining testicle offer significant advantages over the other groups for wool production. Severe posthitis was not observed, they were infertile, they did not attract penalty rates for shearing or slaughter and their clean fleece weight, wool quality, carcass weight and grade were comparable with or superior to wethers. To reduce dependence on synthetic hormones to control posthitis, traditional complete castration techniques could be replaced with this type of partial castration in wool-producing flocks.



2009 ◽  
Vol 49 (1) ◽  
pp. 32 ◽  
Author(s):  
S. I. Mortimer ◽  
D. L. Robinson ◽  
K. D. Atkins ◽  
F. D. Brien ◽  
A. A. Swan ◽  
...  

Heritability was estimated for a range of visually assessed traits recorded on Merino sheep, together with the phenotypic and genetic correlations among the visually assessed traits and correlations of the visually assessed traits with measured wool production traits and liveweight. Data were derived from four research resource flocks, with a range of 12 958 to 57 128 records from animals with 478 to 1491 sires for the various traits. The estimates of heritability were high for the wool quality traits of handle, wool character and wool colour (0.33–0.34) and the conformation traits of face cover, neck wrinkle and body wrinkle (0.42–0.45), moderate for front leg structure (0.18) and low for back leg structure (0.13). Fleece rot score had low heritability (0.14), while classer grade was moderately heritable (0.20). Estimates of genetic correlations among the visually assessed wool quality traits were low to moderate in size and positive (0.17–0.47). Genetic correlation estimates among the assessed conformation traits were generally very low, except for the genetic correlations between scores for neck and body wrinkle (0.92 ± 0.01) and front and back leg structure (0.31 ± 0.09). Fleece rot score had low positive genetic correlations with neck and body wrinkle scores (0.18 ± 0.05 and 0.15 ± 0.05, respectively) and classer grade (0.26 ± 0.06). Classer grade was slightly positively correlated with the wool quality traits (0.17–0.45) and leg structure traits (0.21–0.25). The genetic correlations among the visually assessed traits were generally neutral to favourable. The visually assessed wool quality traits had low to moderate favourable genetic correlations with mean and coefficient of variation of fibre diameter (0.19 –0.47), but negative correlations with clean wool yield (–0.26 to –0.37). Face cover was unfavourably correlated with staple length (–0.27 ± 0.04) and liveweight (–0.23 ± 0.02). Neck and body wrinkle scores were genetically associated with higher greasy (0.33–0.39) and clean fleece weights (0.19–0.22), greater coefficient of variation of fibre diameter (0.24–0.26) and fibre curvature (0.27–0.28), but with reduced yield (–0.26 to –0.28) and staple length (–0.34 to –0.41). Fleece rot score was genetically correlated with clean fleece weight (0.26 ± 0.05) and coefficient of variation of fibre diameter (0.27 ± 0.04). Classer grade was favourably correlated with greasy and clean fleece weights (–0.41 to –0.43), staple length (–0.29 ± 0.04), liveweight (–0.36 ± 0.03) and coefficient of variation of fibre diameter (0.27 ± 0.03). Most genetic correlations between the visually assessed traits and the measured production traits and liveweight were close to zero and less than 0.2 in magnitude. This study provides accurate values for the parameter matrix required to incorporate visually assessed traits into breeding objectives and the genetic evaluation programs used in the Australian sheep industry, allowing the development of breeding objectives and indexes that optimally combine visually assessed performance and measured production in Merino sheep.



1995 ◽  
Vol 35 (8) ◽  
pp. 1093 ◽  
Author(s):  
PT Doyle ◽  
TW Plaisted ◽  
RA Love

The effects of different supplementary feeding practices in summer-autumn and management strategies on green pasture on liveweight change, wool growth rate, annual wool production and wool characteristics of young Merino wethers were examined at 2 farms. The grain feeding treatments were lupins (L) or lupins and oats (LO) fed in amounts that were adjusted to try and maintain liveweight, or lupins and oats (LOG) fed at a higher rate. The objectives of liveweight maintenance or gain were not always achieved, but liveweight patterns differed between LOG compared with L or LO during summer-autumn. The sheep used at farm 1 were aged 4.5 months and liveweight 32 kg at the start of the experiment, while those at farm 2 were 6.5 months and liveweight 39 kg. The stocking rate in summer-autumn was 8 wethers/ha at both farms. During supplementation, sheep on LOG had a higher (P<0.05) liveweight change compared with those on L or LO (farm 1, 15 v. -8 g/sheep. day; farm 2, -35 v. -51 g/sheep. day) and clean wool growth rates (farm 1, 7.1 v. 6.4 g/sheep. day; farm 2, 5.1 v. 4.8 g/sheep.day). The sheep on LOG grew broader (P<0.05) wool than those on L or LO (farm 1, 19.0 v. 18.5 �m; farm 2, 21.7 v. 20.8 �m), and at farm 1 length was also greater (P<0.05) (114 v. 111 mm), while at farm 2 staple strength was greater (P<0.01) (22.9 v. 16.4 N/ktex). There were no significant differences in annual clean wool production. There were positive (P<0.01) relationships between staple strength and liveweight change to the time of minimum liveweight in summer-autumn. After green pasture on offer reached 500 kg DM/ha in autumn, different liveweight change patterns were achieved in 2 groups (LS, lower stocking rates; HS, higher stocking rates) of sheep at each farm by adjusting stocking rates. Within a farm, the LS and HS groups were comprised of equal numbers of sheep from each replicate of the supplementary feeding treatments. There were differences (P<0.05 to 0.01) in liveweight change between LS and HS (farm 1, 93 v. 72 g/day; farm 2, 127 v. 60 g/day), the differences being more pronounced at farm 2. The differential stocking rates at farm 2 resulted in differences in clean wool growth rates (P<0.01), in clean wool production (4.22 v. 4.53 kg, P<0.05), and fibre diameter (20.8 v. 21.4 �m, P<0.01), but there were no significant effects on staple length or strength. There were no significant effects of the supplementary feeding treatments imposed in summer-autumn on the responses to the stocking rate treatments on green pasture.



1994 ◽  
Vol 45 (2) ◽  
pp. 367 ◽  
Author(s):  
AN Thompson ◽  
PT Doyle ◽  
M Grimm

Two experiments examined the effects of different stocking rates in spring, and hence the availability of annual pastures, on changes in liveweight and wool production in Merino wethers (Experiments 1 and 2 respectively: age 5 and 2+-year-old; liveweight 63.8 � 0.64 (s.e.m.) kg and 43.8 � 0.34 kg; condition score 3.9% 0.14 and 3.l � 0-08). In Experiment 1, stocking rates were 8, 16, 24, 32 and 40 sheep/ha from 8 August, 1989 f9r 122 days; Experiment 2 involved an additional stocking rate of 48 sheep/ha from 23 August, 1990 for 98 days. Feed on offer (FOO kg DM/ha) declined (P < 0.01) linearly as stocking rate increased. Stocking rate and initial FOO (ranging between 1100 and 7000 kg DM/ha) had no significant effects on pasture growth rate (PGR) through most of spring. Late in spring, increased stocking rates resulted in greater (P < 0.05) PGR. The total amount of pasture produced in the grazing period was not significantly affected by stocking rate (Expt 1, 7530 to 8200 kg DM/ha; Expt 2, 6390 to 6860 kg DM/ha). The relationships between liveweight change (LWC) or wool growth rates (WGR) and FO, during the period until pasture wilting at the lowest stocking rate (83 days in Expt 1; 76 days in Expt 2), were described by Mitscherlich equations. More than 74% of the variation in LWC or WGR was explained by differences in green FOO. In Expts 1 and 2 respectively, more than 90% of the maximum liveweight gain (66 and 192 g/day) was achieved at a FOO of 4000 or 3000 kg DM/ha, and sheep maintained weight at 2000 or 1000 kg DM/ha. More than 90% of the maximum WGR (22.3 and 19.0 g/day) was achieved at a FOO of 3000 or 2000 kg DM/ha. More than 70% of the variation in WGR was explained by LWC in both experiments. The slopes of the linear relationships were 0.047 g wool/g LWC in Expt 1, and 0.024 g wool/g LWC in Expt 2. At liveweight maintenance, sheep produced 15% less (Expt 1) or 25% less (Expt 2) wool than those grazed under conditions which allowed maximum rates of liveweight gain. Fibre diameter (FD) and length of wool grown were affected in the same manner as WGR by increases in FOO and hence LWC. In Expts 1 and 2 respectively, total clean wool weights were reduced by 17 and 9 g, mean FD by 0.05 and 0.02 microns and staple length by 0.35 and 0.13 mm, for each increase of one sheep/ha during the spring treatment periods. The effects of stocking rate in spring on annual wool production, mean FD and staple length were described by linear (P < 0.05 to P < 0.01) relationships. Standard deviation of midside FD (Expt 2), staple strength and position of break (both experiments) did not change significantly with stocking rate. These results indicate that grazing to a lower FOO during spring can be used to manipulate the amount and characteristics of wool produced by Merino wethers grazing annual pastures in Mediterranean climates with 600-700 mm rainfall.



1966 ◽  
Vol 46 (1) ◽  
pp. 9-18 ◽  
Author(s):  
J. A. Vesely ◽  
H. F. Peters ◽  
S. B. Slen

Rambouillet, Romnelet, Columbia, Targhee, and Suffolk sheep were evaluated under range conditions for the production of lamb and wool in the period 1960–1963. The production traits analyzed were: birth and weaning weight; face cover and neck wrinkling; fertility, prolificacy, weaned lamb production, and body weight of ewe; lamb survival to weaning; grease and clean fleece weight, staple length, wool grade, and percentage yield of clean wool by yearling and mature ewes.Lambs of Romnelet were lighter at birth than those of the other breeds. Targhee and Suffolk were the heaviest at birth. Romnelet and Columbia lambs were lighter at weaning than those of Rambouillet, Targhee, and Suffolk.Fertility, prolificacy, and weaned lamb production were essentially the same in the four range breeds. Suffolk produced more weaned lamb than the other four breeds. There were no breed differences in the survival of lambs.Columbia exceeded all other breeds in production of grease and clean fleece weight. Suffolk produced the smallest amount of wool. Staple length of Columbia ewes was 4.3, 7.5, 18.6, 23.7 mm longer than that of Romnelet, Targhee, Suffolk, and Rambouillet ewes.



1998 ◽  
Vol 49 (8) ◽  
pp. 1187 ◽  
Author(s):  
N. R. Adams ◽  
J. R. Briegel

The present study examined changes in wool growth, liveweight, and body composition in groups of fine, medium, and broad wool Merino wethers grazed together at pasture in the highly seasonal Mediterranean environment, to determine the sources of variation in wool growth that may affect staple strength (SS). Seasonal changes in wool growth were measured using 6 dyebands placed at times of seasonal change in the nutrient supply from pasture, and liveweights were recorded fortnightly. Dilution of deuterated water was used to determine changes in body composition between the beginning of summer and the end of autumn. The sheep lost liveweight over this period, but loss of protein relative to fat over this period was unexpectedly high (7 : 1). The relative changes in liveweight, and loss of its components (fat and lean) during summer and autumn, were similar in all 3 groups, even though the Broad group was heavier than the other 2 genotypes at all times (P < 0·01). In contrast to the similar pattern of liveweight change, wool growth rates and changes in the fibre diameter were less variable throughout the year in the Broad group than the other 2 groups (P < 0·001). Stepwise regression indicated that the characteristics related to SS were standard deviation in fibre diameter (SDfd; P < 0·001), mean fibre diameter (P < 0·001), and variation in diameter within a 200-mm length of wool fibre (Sdfdwithin; P < 0·05). However, the relative importance of different factors for SS differed within each group. The most important factors were mean fibre diameter in the Fine group, the variation in fibre diameter along the staple (SDfdalong) in the Medium group, and the variation in diameter between fibres (SDfdbetween) in the Broad group. It is concluded that SS is a complex characteristic, depending on both the fibre diameter and several sources of variation in fibre diameter, all of which can differ among flocks. Protein loss made a disproportionate contribution to liveweight loss over summer and autumn, but the amino acids made available did not contribute substantially to wool growth or SS.



Sign in / Sign up

Export Citation Format

Share Document