Factors affecting the growth of kikuyu. II. Water supply

1988 ◽  
Vol 39 (1) ◽  
pp. 43
Author(s):  
GJ Murtagh

The influence of water supply on the growth of a kikuyu (Pennisetum clandestinum) pasture was estimated from field measurements of growth rate. A model was used to separate the confounded effects on growth of light interception, temperature, nitrogen and water supplies, and maintenance respiration. Water supply for growth was expressed as a function of both the soil water content and evaporative demand (potential evapotranspiration). The growth of kikuyu was very sensitive to water supply. On a wet soil (soil water potential > -20 kPa), an evaporative demand above 3.2 mm day-1 slowed growth. With optimum temperatures and a sward yield which gave the best balance between light interception and rate of maintenance respiration, a low evaporative demand of 2 mm day-1 reduced growth rates only when the soil water potential was less than - 134 kPa. However, with a medium-high evaporative demand of 5 mm day-1, growth was reduced by 39% on a wet soil, and ceased at a soil water potential of - 101 kPa.

Author(s):  
M. Bordoni ◽  
M. Bittelli ◽  
R. Valentino ◽  
V. Vivaldi ◽  
C. Meisina

AbstractSoil-atmosphere interaction has implications in different scientific research contexts and is increasingly investigated through field measurements. This paper reports a detailed description of interaction between shallow soil and atmosphere at two test sites in Oltrepò Pavese area (Northern Italy). The two test sites are in the same climatic area but are characterised by different geological features. In fact, the first objective is to compare the behaviour of two different soils, namely a clayey-sandy silt (CL) and a silty clay (CH), under similar meteorological events. Soil-atmosphere interaction is studied on the basis of long-term (about 87 and 42 months for the two test sites, respectively) monitoring data of both volumetric water content and soil water potential, recorded at different depths along two vertical soil profiles in the first two metres from ground level. Field measurements, together with meteorological data such as precipitation and air temperature, allow for clear identification of the seasonal fluctuations of unsaturated soil hydraulic properties. To infer detailed information, the recorded data were processed and relationships between soil water potential and water content were investigated. Different time spans, from several months to a few days, even including single rainy events, are considered to show the hydraulic soil behaviour. The hysteretic cycles of water content with respect to soil water potential and non-equilibrium flow are highlighted. In particular, the measured soil water potential is in the range of 0–800 kPa and of 0–1500 kPa for the CL and CH soil, respectively. At both sites, the observed hysteretic cycles are more frequent in the hot season (summer) than in the cold season (winter) and tend to reduce with depth. The experimental results are compared with the soil water characteristic curves (SWCCs) to assess whether and to what extent the SWCCs are reliable in modelling the hydraulic behaviour of partially saturated soils, under atmospheric forcing, at least in the considered climatic contexts.


1979 ◽  
Vol 71 (6) ◽  
pp. 980-982 ◽  
Author(s):  
L. G. Heatherly ◽  
W. J. Russell

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1208
Author(s):  
Massimiliano Bordoni ◽  
Fabrizio Inzaghi ◽  
Valerio Vivaldi ◽  
Roberto Valentino ◽  
Marco Bittelli ◽  
...  

Soil water potential is a key factor to study water dynamics in soil and for estimating the occurrence of natural hazards, as landslides. This parameter can be measured in field or estimated through physically-based models, limited by the availability of effective input soil properties and preliminary calibrations. Data-driven models, based on machine learning techniques, could overcome these gaps. The aim of this paper is then to develop an innovative machine learning methodology to assess soil water potential trends and to implement them in models to predict shallow landslides. Monitoring data since 2012 from test-sites slopes in Oltrepò Pavese (northern Italy) were used to build the models. Within the tested techniques, Random Forest models allowed an outstanding reconstruction of measured soil water potential temporal trends. Each model is sensitive to meteorological and hydrological characteristics according to soil depths and features. Reliability of the proposed models was confirmed by correct estimation of days when shallow landslides were triggered in the study areas in December 2020, after implementing the modeled trends on a slope stability model, and by the correct choice of physically-based rainfall thresholds. These results confirm the potential application of the developed methodology to estimate hydrological scenarios that could be used for decision-making purposes.


1988 ◽  
Vol 68 (3) ◽  
pp. 569-576 ◽  
Author(s):  
YADVINDER SINGH ◽  
E. G. BEAUCHAMP

Two laboratory incubation experiments were conducted to determine the effect of initial soil water potential on the transformation of urea in large granules to nitrite and nitrate. In the first experiment two soils varying in initial soil water potentials (− 70 and − 140 kPa) were incubated with 2 g urea granules with and without a nitrification inhibitor (dicyandiamide) at 15 °C for 35 d. Only a trace of [Formula: see text] accumulated in a Brookston clay (pH 6.0) during the transformation of urea in 2 g granules. Accumulation of [Formula: see text] was also small (4–6 μg N g−1) in Conestogo silt loam (pH 7.6). Incorporation of dicyandiamide (DCD) into the urea granule at 50 g kg−1 urea significantly reduced the accumulation of [Formula: see text] in this soil. The relative rate of nitrification in the absence of DCD at −140 kPa water potential was 63.5% of that at −70 kPa (average of two soils). DCD reduced the nitrification of urea in 2 g granules by 85% during the 35-d period. In the second experiment a uniform layer of 2 g urea was placed in the center of 20-cm-long cores of Conestogo silt loam with three initial water potentials (−35, −60 and −120 kPa) and the soil was incubated at 15 °C for 45 d. The rate of urea hydrolysis was lowest at −120 kPa and greatest at −35 kPa. Soil pH in the vicinity of the urea layer increased from 7.6 to 9.1 and [Formula: see text] concentration was greater than 3000 μg g−1 soil. There were no significant differences in pH or [Formula: see text] concentration with the three soil water potential treatments at the 10th day of the incubation period. But, in the latter part of the incubation period, pH and [Formula: see text] concentration decreased with increasing soil water potential due to a higher rate of nitrification. Diffusion of various N species including [Formula: see text] was probably greater with the highest water potential treatment. Only small quantities of [Formula: see text] accumulated during nitrification of urea – N. Nitrification of urea increased with increasing water potential. After 35 d of incubation, 19.3, 15.4 and 8.9% of the applied urea had apparently nitrified at −35, −60 and −120 kPa, respectively. Nitrifier activity was completely inhibited in the 0- to 2-cm zone near the urea layer for 35 days. Nitrifier activity increased from an initial level of 8.5 to 73 μg [Formula: see text] in the 3- to 7-cm zone over the 35-d period. Nitrifier activity also increased with increasing soil water potential. Key words: Urea transformation, nitrification, water potential, large granules, nitrifier activity, [Formula: see text] production


Sign in / Sign up

Export Citation Format

Share Document