scholarly journals Variability of Water Megamasers in AGN

2002 ◽  
Vol 19 (1) ◽  
pp. 88-90 ◽  
Author(s):  
Philip Maloney

AbstractPowerful water masers have been detected in 23 active galactic nuclei (AGN) to date. Most of the sources that have been monitored show evidence for variability, which may be either intrinsic (response of the masers to a time-varying pump or background source) or extrinsic (the effects of scintillation in the interstellar medium of the Galaxy). I briefly review the examples in which these mechanisms may be operating (interstellar scintillation in the Circinus galaxy, a time-varying background source in Mrk 348, and a time-varying AGN luminosity in NGC 1068).

1983 ◽  
Vol 6 ◽  
pp. 467-480 ◽  
Author(s):  
A. S. Wilson

AbstractA substantial fraction of active galaxies contain linear radio sources with sizes of a few hundreds or thousands of parsecs. Such sources are found in essentially all classes of active galactic nuclei, including Seyfert galaxies of both types, X-ray selected active nuclei, radio galaxies and quasars. The radio emission is clearly energised by the active nucleus, probably in the form of a jet. A number of observable consequences of the interaction of the jet with the interstellar medium of the galaxy are discussed. These processes include jet disruption by instabilities, acceleration of cosmic rays by shocks or turbulence, ionization and radial acceleration of interstellar clouds, creation of a hot thermal component through the agency of shock waves and bending of the jet by the ram pressure of a rotating interstellar medium.


Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 36
Author(s):  
Yoshiyuki Inoue ◽  
Dmitry Khangulyan ◽  
Akihiro Doi

To explain the X-ray spectra of active galactic nuclei (AGN), non-thermal activity in AGN coronae such as pair cascade models has been extensively discussed in the past literature. Although X-ray and gamma-ray observations in the 1990s disfavored such pair cascade models, recent millimeter-wave observations of nearby Seyferts have established the existence of weak non-thermal coronal activity. In addition, the IceCube collaboration reported NGC 1068, a nearby Seyfert, as the hottest spot in their 10 yr survey. These pieces of evidence are enough to investigate the non-thermal perspective of AGN coronae in depth again. This article summarizes our current observational understanding of AGN coronae and describes how AGN coronae generate high-energy particles. We also provide ways to test the AGN corona model with radio, X-ray, MeV gamma ray, and high-energy neutrino observations.


2019 ◽  
Vol 15 (S356) ◽  
pp. 375-375
Author(s):  
Sarah White

AbstractLow-frequency radio emission allows powerful active galactic nuclei (AGN) to be selected in a way that is unaffected by dust obscuration and orientation of the jet axis. It also reveals past activity (e.g. radio lobes) that may not be evident at higher frequencies. Currently, there are too few “radio-loud” galaxies for robust studies in terms of redshift-evolution and/or environment. Hence our use of new observations from the Murchison Widefield Array (the SKA-Low precursor), over the southern sky, to construct the GLEAM 4-Jy Sample (1,860 sources at S151MHz > 4 Jy). This sample is dominated by AGN and is 10 times larger than the heavily relied-upon 3CRR sample (173 sources at S178MHz > 10 Jy) of the northern hemisphere. In order to understand how AGN influence their surroundings and the way galaxies evolve, we first need to correctly identify the galaxy hosting the radio emission. This has now been completed for the GLEAM 4-Jy Sample – through repeated visual inspection and extensive checks against the literature – forming a valuable, legacy dataset for investigating relativistic jets and their interplay with the environment.


2012 ◽  
Vol 8 (S292) ◽  
pp. 188-188
Author(s):  
J. R. Allison ◽  
E. M. Sadler ◽  
S. J. Curran ◽  
S. N. Reeves

AbstractRecent targeted studies of associated H i absorption in radio galaxies are starting to map out the location, and potential cosmological evolution, of the cold gas in the host galaxies of Active Galactic Nuclei (AGN). The observed 21 cm absorption profiles often show two distinct spectral-line components: narrow, deep lines arising from cold gas in the extended disc of the galaxy, and broad, shallow lines from cold gas close to the AGN (e.g. Morganti et al. 2011). Here, we present results from a targeted search for associated H i absorption in the youngest and most recently-triggered radio AGN in the local universe (Allison et al. 2012b). So far, by using the recently commissioned Australia Telescope Compact Array Broadband Backend (CABB; Wilson et al. 2011), we have detected two new absorbers and one previously-known system. While two of these show both a broad, shallow component and a narrow, deep component (see Fig. 1), one of the new detections has only a single broad, shallow component. Interestingly, the host galaxies of the first two detections are classified as gas-rich spirals, while the latter is an early-type galaxy. These detections were obtained using a spectral-line finding method, based on Bayesian inference, developed for future large-scale absorption surveys (Allison et al. 2012a).


2004 ◽  
Vol 617 (1) ◽  
pp. L29-L32 ◽  
Author(s):  
J. A. Braatz ◽  
C. Henkel ◽  
L. J. Greenhill ◽  
J. M. Moran ◽  
A. S. Wilson

2018 ◽  
Vol 612 ◽  
pp. A69 ◽  
Author(s):  
L. Grosset ◽  
D. Rouan ◽  
D. Gratadour ◽  
D. Pelat ◽  
J. Orkisz ◽  
...  

Aims. In this paper we aim to constrain the properties of dust structures in the central first parsecs of active galactic nuclei (AGN). Our goal is to study the required optical depth and composition of different dusty and ionised structures. Methods. We developed a radiative transfer code called Monte Carlo for Active Galactic Nuclei (MontAGN), which is optimised for polarimetric observations in the infrared. With both this code and STOKES, designed to be relevant from the hard X-ray band to near-infrared wavelengths, we investigate the polarisation emerging from a characteristic model of the AGN environment. For this purpose, we compare predictions of our models with previous infrared observations of NGC 1068, and try to reproduce several key polarisation patterns revealed by polarisation mapping. Results. We constrain the required dust structures and their densities. More precisely, we find that the electron density inside the ionisation cone is about 2.0 × 109 m−3. With structures constituted of spherical grains of constant density, we also highlight that the torus should be thicker than 20 in term of K-band optical depth to block direct light from the centre. It should also have a stratification in density: a less dense outer rim with an optical depth at 2.2 μm typically between 0.8 and 4 for observing the double scattering effect previously proposed. Conclusions. We bring constraints on the dust structures in the inner parsecs of an AGN model supposed to describe NGC 1068. When compared to observations, this leads to an optical depth of at least 20 in the Ks band for the torus of NGC 1068, corresponding to τV ≈ 170, which is within the range of current estimation based on observations. In the future, we will improve our study by including non-uniform dust structures and aligned elongated grains to constrain other possible interpretations of the observations.


Author(s):  
Mauro D’Onofrio ◽  
Paola Marziani ◽  
Cesare Chiosi

We review the properties of the established Scaling Relations (SRs) of galaxies and active galactic nuclei (AGN), focusing on their origin and expected evolution back in time, providing a short history of the most important progresses obtained up to now and discussing the possible future studies. We also try to connect the observed SRs with the physical mechanisms behind them, examining to what extent current models reproduce the observational data. The emerging picture clarifies the complexity intrinsic to the galaxy formation and evolution process as well as the basic uncertainties still affecting our knowledge of the AGN phenomenon. At the same time, however, it suggests that the detailed analysis of the SRs can profitably contribute to our understanding of galaxies and AGN.


2019 ◽  
Vol 486 (1) ◽  
pp. 1138-1145
Author(s):  
T V Ricci ◽  
J E Steiner

Abstract Active Galactic Nuclei are objects associated with the presence of an accretion disc around supermassive black holes found in the very central region of galaxies with a well-defined bulge. In the optical range of the spectrum, a possible signature of the accretion disc is the presence of a broad double-peaked component that is mostly seen in H α. In this paper, we report the detection of a double-peaked feature in the H α line in the nucleus of the galaxy NGC 4958. The narrow-line region of this object has an emission that is typical of a low-ionization nuclear emission-line region galaxy, which is the usual classification for double-peaked emitters. A central broad component, related to the broad-line region of this object, is seen in H α and also in H β. We concluded that the double-peaked emission is emitted by a circular relativistic Keplerian disc with an inner radius ξi  = 570 ± 83, an outer radius ξo  = 860 ± 170 (both in units of GMSMBH/c2), an inclination to the line of sight i = 27.2 ± 0.7° and a local broadening parameter σ  = 1310 ± 70 km s−1.


2020 ◽  
Vol 494 (2) ◽  
pp. 2538-2560 ◽  
Author(s):  
J M M Neustadt ◽  
T W-S Holoien ◽  
C S Kochanek ◽  
K Auchettl ◽  
J S Brown ◽  
...  

ABSTRACT We present the discovery of ASASSN-18jd (AT 2018bcb), a luminous optical/ultraviolet(UV)/X-ray transient located in the nucleus of the galaxy 2MASX J22434289–1659083 at z = 0.1192. Over the year after discovery, Swift UltraViolet and Optical Telescope (UVOT) photometry shows the UV spectral energy distribution of the transient to be well modelled by a slowly shrinking blackbody with temperature $T \sim 2.5 \times 10^{4} \, {\rm K}$, a maximum observed luminosity of $L_{\rm max} = 4.5^{+0.6}_{-0.3}\times 10^{44} \, {\rm erg \,s}^{-1}$, and a radiated energy of $E = 9.6^{+1.1}_{-0.6} \times 10^{51} \, {\rm erg}$. X-ray data from Swift X-Ray Telescope (XRT) and XMM–Newton show a transient, variable X-ray flux with blackbody and power-law components that fade by nearly an order of magnitude over the following year. Optical spectra show strong, roughly constant broad Balmer emission and transient features attributable to He ii, N iii–v, O iii, and coronal Fe. While ASASSN-18jd shares similarities with tidal disruption events (TDEs), it is also similar to the newly discovered nuclear transients seen in quiescent galaxies and faint active galactic nuclei (AGNs).


1986 ◽  
Vol 119 ◽  
pp. 141-147
Author(s):  
David H. Roberts ◽  
John F. C. Wardle

We present milliarcsecond-resolution 5 GHz polarization maps of several active galactic nuclei: one epoch each for the quasar 3C345, the galaxy 3C120, and the BL Lacertae object 0735+178, and two epochs for the BL Lacertae object OJ287.


Sign in / Sign up

Export Citation Format

Share Document