scholarly journals Velocity-Curve Analysis of the Spectroscopic Binary Stars V373 Cas, V2388 Oph, V401 Cyg, GM Dra, V523 Cas, AB And and HD 141929 by Artificial Neural Networks

2009 ◽  
Vol 26 (2) ◽  
pp. 121-127 ◽  
Author(s):  
K. Karami ◽  
K. Ghaderi ◽  
R. Mohebi ◽  
R. Sadeghi ◽  
M. M. Soltanzadeh

AbstractWe used an Artificial Neural Network (ANN) to derive the orbital parameters of spectroscopic binary stars. Using measured radial velocity data of seven double-lined spectroscopic binary systems V373 Cas, V2388 Oph, V401 Cyg, GM Dra, V523 Cas, AB And and HD 141929, we found corresponding orbital and spectroscopic elements. Our numerical results are in good agreement with those obtained by others using more traditional methods.

2011 ◽  
Vol 89 (10) ◽  
pp. 1035-1040 ◽  
Author(s):  
K. Karami ◽  
K. Ghaderi ◽  
R. Mohebi ◽  
M.M. Soltanzadeh

Using measured radial velocity data from six double-lined spectroscopic binary systems PV Pup, BV Dra, AI Phe, V1130 Tau, NSV 223 (or DZ Psc), and V502 Oph, we find corresponding orbital and spectroscopic elements via the method introduced by Karami et al. (New Astron. 14, 478 (2009)). Our numerical results are in good agreement with those obtained by others using more traditional methods. Using a statistical analysis, we also conclude that for BV Dra, V1130 Tau, NSV 223 (or DZ Psc), and V502 Oph, a circular orbit is quite consistent.


Author(s):  
K. Ghaderi ◽  
M.H. Baghadam ◽  
T. Rostami

Using measured radial velocity data of four double-lined spectroscopic binary systems CS22964-161, LV Her, RW Lac and HD 34700, we find corresponding orbital and spectroscopic elements via a Probabilistic Neural Network (PNN). Our numerical results are in good agreement with those obtained by others using more traditional methods.


2012 ◽  
Vol 45 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Kamal Ghaderi ◽  
Ali Pirkhedri ◽  
Touba Rostami ◽  
Salem Khodamoradi ◽  
Hedayat Fatahi

2019 ◽  
Vol 895 ◽  
pp. 52-57 ◽  
Author(s):  
Prasanna Vineeth Bharadwaj ◽  
T.P. Jeevan ◽  
P.S. Suvin ◽  
S.R. Jayaram

Tribotesting is necessary to understand the behaviour of the material under various operating lubrication conditions. This paper deals with the training of an artificial neural network (ANN) model with Bio-lubricant properties and machining conditions for prediction of surface roughness and coefficient of friction in Tribotesting by Tool chip Tribometer. Experimental results obtained from Tool chip tribometer for tested bio-lubricants are compared with those obtained by ANN prediction. A good agreement in results recommends that a well trained neural network is competent enough to predict the parameters in Tribotesting process.


1983 ◽  
Vol 62 ◽  
pp. 191-201
Author(s):  
John Davis

AbstractThe observations of α Vir with the Narrabri Stellar Intensity Interferometer demonstrated the potential of long baseline interferometry for the determination of fundamental properties of double-lined spectroscopic binary systems. Since the completion of the programme with the Narrabri instrument the Chatterton Astronomy Department has been conducting a study aimed at developing a stellar interferometer with limiting magnitude V ≳ +8 and maximum baseline ≳ 1 km (resolution at 500 nm ≲ 7 × 10−5 seconds of arc). The way in which a long baseline interferometer may be used in the study of binary stars is outlined, the requirements for this work are discussed, and the current status and future plans of the Chatterton Astronomy Department’s programme to develop a new long baseline interferometer are summarised.


2001 ◽  
Vol 200 ◽  
pp. 472-482
Author(s):  
Francesco Palla

I will discuss several tests to gauge the accuracy of pre–main-sequence (PMS) models. Methods to determine the mass of young stars are overviewed, with emphasis on the information provided by double-lined, spectroscopic binary systems. A comparison of the dynamically determined masses with those estimated using the PMS models of Palla & Stahler (1999) is presented. Good agreement between empirical and theoretical masses is found. The analysis of the inferred ages from the isochrones shows a remarkable coevality within each binary system. A complete assessment of the accuracy of PMS tracks needs the identification of eclipsing systems of low-mass.


1982 ◽  
Vol 69 ◽  
pp. 129-131
Author(s):  
E.I. Popova ◽  
A.V. Tutukov ◽  
B.M. Shustov ◽  
L.R. Yungelson

About 60% of stars of the disc population in our Galaxy are close binary systems (CBS). Half of the known CBS are spectroscopic binary stars (Kraitcheva et al., 1978).To know the distribution of a correlation between the masses of CBS components and semiaxes of their orbits is necessary for the investigation of the origin and evolution of CBS. For such statistical investigations, a catalogue of CBS was compiled at the Astronomical Council. The catalogue is based on the 6th Batten catalogue (Batten, 1967), its extensions (Pedoussant and Ginestet, 1971; Pedoussant and Carquillat, 1973) and data published up to the end of 1980 (Popova et al., 1981). Now it is recorded on magnetic tape and contains data on 1041 spectroscopic binaries; 333 of them are stars with two visible spectra. The latter are mostly systems prior to mass exchange and the distribution of physical parameters in these systems reflects the distribution and presumably conditions at the time of formation. Using some assumptions, we can obtain for spectroscopic binaries masses of the components M1 and M2 (or the ratio q = M1/M2) and semiaxes of their orbits. Masses of components with the known sin i were obtained by the usual technique; when sin i was not known, masses were estimated from the spectra. We shall discuss here the distribution of CBS in the M-a plane.


2005 ◽  
Vol 13 ◽  
pp. 463-463
Author(s):  
Virpi S. Niemela

We present results of our ongoing observing program on search and studies of massive stars (O and WR type) in binary systems in our neighbor galaxies, the Magellanic Clouds. Radial velocity orbits are presented for two new binaries, one in the Small Magellanic Cloud and another in the Large Magellanic Cloud, and improved orbits for previously known systems. We compare orbital parameters of selected binaries containing O and WR type components. We also discuss the present status of knowledge for massive binary stars in the Magellanic Clouds and the problems encountered in their orbital studies such as stellar winds the ubiquitous tendency to be born in multiple systems.


Sign in / Sign up

Export Citation Format

Share Document