Nitrogen use efficiency: does a trade-off exist between the N productivity and the mean residence time within species?

2008 ◽  
Vol 56 (3) ◽  
pp. 272 ◽  
Author(s):  
Zhi Y. Yuan ◽  
Han Y. H. Chen ◽  
Ling H. Li

Nitrogen use efficiency (NUE) can be divided into two components, i.e. N productivity (A) and the mean residence time (MRT). Controlled experiments indicate that there is not a trade-off between A and MRT within species, but this theory has not been well tested in field conditions. Here, we studied the A, MRT and NUE of Stipa krylovii Roshev. in a grassland over 4 years of N fertilisation experimentation. The three parameters (A, MRT and NUE) were significantly related to soil N supply and there was a negative relationship between A and MRT within this species (r = –0.775, P < 0.05), i.e. plants with higher A had lower MRT. Our results showed a trade-off between A and MRT within this Stipa species and this observed trade-off was attributed to different responses of A and MRT to soil fertility.

Author(s):  
Shengkui Cao ◽  
Qi Feng ◽  
Jianhua Si ◽  
Yonghong Su ◽  
Zongqiang Chang ◽  
...  

Foliar d13C values are often used to denote the long-term water use efficiency (WUE) of plants whereas long-term nitrogen use efficiency (NUE) are usually estimated by the ratio of C to N in the leaves. Seasonal variations of d13C values, foliar nitrogen concentration and C/N ratios of Populus euphratica and Tamarix ramosissima grown under five different microhabitats of Ejina desert riparian oasis of northwestern arid regions in China were studied. The results indicated that T. ramosissima had higher d13C value compared with that of P. euphratica. The N concentration and C/N ratios of two species were not significantly different. The seasonal pattern of three indexes in two species was different. The d13C values and N concentration decreased during the plant’s growth period. However, the change of C/N ratios was increased. Among microhabitats, there were higher d13C values and N concentration as well as lower C/N ratios in the Dune and Gobi habitats. Foliar d13C values significantly and positively correlated with N concentration in P. euphratica and T. ramosissima, whereas a significantly negative correlation between d13C values and C/N ratios was found for P. euphratica. This relation in T. ramosissima was weak, but there was a significant quadratic curve relationship between d13C values and C/N ratios, which revealed that there was a trade-off between WUE and NUE for P. euphratica and in natural condition, P. euphratica could not improve WUE and NUE simultaneously. T. ramosissima could simultaneously enhance WUE and NUE. The above characters of WUE and NUE in two plants reflected the different adaptations of desert species to environmental condition.


2004 ◽  
Vol 84 (2) ◽  
pp. 589-598 ◽  
Author(s):  
B. J. Zebarth ◽  
G. Tai ◽  
R. Tarn ◽  
H. de Jong ◽  
P. H. Milburn

One approach for reducing the contribution of potato (Solanum tuberosum L.) production to nitrate contamination of groundwater is to develop cultivars which utilize N more efficiently. In this study, variation in N use efficiency (NUE; dry matter production per unit crop N supply) characteristics of 20 commercial potato cultivars of North American and European origin were evaluated in 2 yr. Cultivars were grown with or without application of 100 kg N ha-1 as ammonium nitrate banded at planting. The recommended within-row spacing was used for each cultivar and no irrigation was applied. Plant dry matter and N accumulation were determined prior to significant leaf senescence. Crop N supply was estimated as fertilizer N applied plus soil inorganic N measured at planting plus apparent net soil N mineralization. Nitrogen use efficiency decreased curvilinearly with increasing crop N supply. Nitrogen use efficiency was lower for early-maturing cultivars compared to mid-season and late-maturing cultivars. A curvilinear relationship was obtained between plant dry matter accumulation and plant N accumulation using data for all cultivars. Deviations from this relationship were interpreted as variation in N utilization efficiency (NUtE; dry matter accumulation per unit N accumulation). Significant differences in NUtE were measured among cultivars of similar maturity. Nitrogen uptake efficiency (NUpE; plant N content per unit crop N supply) and soil nitrate concentration measured at plant harvest were uniformly low for all cultivars when crop N supply was limited, but varied among cultivars when N was more abundant. This suggests that potato cultivars vary more in terms of N uptake capacity (plant N accumulation in the presence of an abundant N supply) than in terms of NUpE. Key words: Solanum tuberosum, N mineralization, dry matter accumulation, N accumulation, N utilization efficiency


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1309 ◽  
Author(s):  
Gilles Lemaire ◽  
Ignacio Ciampitti

Due to the asymptotic nature of the crop yield response curve to fertilizer N supply, the nitrogen use efficiency (NUE, yield per unit of fertilizer applied) of crops declines as the crop N nutrition becomes less limiting. Therefore, it is difficult to directly compare the NUE of crops according to genotype-by-environment-by-management interactions in the absence of any indication of crop N status. The determination of the nitrogen nutrition index (NNI) allows the estimation of crop N status independently of the N fertilizer application rate. Moreover, the theory of N dilution in crops indicates clearly that crop N uptake is coregulated by (i) soil N availability and (ii) plant growth rate capacity. Thus, according to genotype-by-environment-by-management interactions leading to variation in potential plant growth capacity, N demand for a given soil N supply condition would be different; consequently, the NUE of the crop would be dissimilar. We demonstrate that NUE depends on the crop potential growth rate and N status defined by the crop NNI. Thus, providing proper context to NUE changes needs to be achieved by considering comparisons with similar crop mass and NNI to avoid any misinterpretation. The latter needs to be considered not only when analyzing genotype-by-environment-by-management interactions for NUE but for other resource use efficiency inputs such as water use efficiency (colimitation N–water) under field conditions.


Geoderma ◽  
2021 ◽  
Vol 403 ◽  
pp. 115374
Author(s):  
Delei Kong ◽  
Yaguo Jin ◽  
Jie Chen ◽  
Kai Yu ◽  
Yajing Zheng ◽  
...  

Bragantia ◽  
2016 ◽  
Vol 75 (3) ◽  
pp. 351-361 ◽  
Author(s):  
Matheus Henrique Todeschini ◽  
Anderson Simionato Milioli ◽  
Diego Maciel Trevizan ◽  
Elesandro Bornhofen ◽  
Taciane Finatto ◽  
...  

ABSTRACT The nitrogen use efficiency (NUE) is defined as the capacity of a given genotype in take advantage of the applied nitrogen (N) and transform it in biomass and grains. The objective of this study was to evaluate 12 wheat cultivars as to the NUE and its components. The experiment was conducted in a controlled environment, in a randomized block design with three replications. Twelve wheat cultivars were submitted to four N supply levels (0, 80, 160 and 240 kg of N∙ha–1). The data were submitted to analysis of variance, means multiple comparison, polynomial regression, and path analysis. The nitrogen remobilization efficiency (NRE) was the main NUE component of the evaluated cultivars, in both low and high conditions of nitrogen fertilization. In the cultivars average, the nitrogen utilization efficiency (NUtE) presented reduction tendency as the N supply was increased, tending to stabilization at the dose of 231 kg of N∙ha–1. The wheat cultivars Mirante, TBIO Itaipu, BRS Parrudo, and TBIO Iguaçu were the most efficient on the N use, and the first two were also efficient in remobilizing the N from the phytomass to the grains.


Agronomy ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 259 ◽  
Author(s):  
Muhammad Azher Nawaz ◽  
Xiaojie Han ◽  
Chen Chen ◽  
Zuhua Zheng ◽  
Fareeha Shireen ◽  
...  

Nitrogen availability is the key determinant of plant growth and development. The improvement of nitrogen use efficiency (NUE) in crops is an important consideration. In fruit and vegetables, such as watermelon, rootstocks are often utilized to control soil borne diseases and improve plant performance to a range of abiotic stresses. In this study, we evaluated the efficacy of 10 wild watermelon rootstocks (ZXG-516, ZXG-941, ZXG-945, ZXG-1250, ZXG-1251, ZXG-1558, ZXG-944, ZXG-1469, ZXG-1463, and ZXG-952) to improve the plant growth and nitrogen use efficiency (NUE) of the watermelon cultivar: Zaojia 8424. Nitrogen use efficiency (NUE) is a comprehensive parameter that represents the ability of a plant to absorb nitrogen (N) and convert the supplied resources to the dry biomass. Wild watermelon rootstocks substantially improved plant growth, rate of photosynthesis, stomatal conductivity, intercellular carbon dioxide concentration, rate of transpiration, nitrogen uptake efficiency, nitrogen use efficiency, and nitrogen utilization efficiency of watermelon. NUE of watermelon grafted onto ZXG-945, ZXG-1250, and ZXG-941 was improved by up to 67%, 77%, and 168%, respectively, at optimum N supply. Similarly, at low N supply (0.2 mM), NUE of watermelon grafted onto ZXG-1558 and ZXG-516 was improved by up to 104% and 175%, respectively. In conclusion, grafting onto some wild rootstocks can improve nitrogen use efficiency of watermelon, and this improved nitrogen use efficiency could be attributed to better N uptake efficiency of wild watermelon rootstocks.


Sign in / Sign up

Export Citation Format

Share Document