scholarly journals Effectiveness of native nectar-feeding birds and the introduced Apis mellifera as pollinators of the kangaroo paw, Anigozanthos manglesii (Haemodoraceae)

2020 ◽  
Vol 68 (1) ◽  
pp. 14
Author(s):  
Bronwyn M. Ayre ◽  
David G. Roberts ◽  
Ryan D. Phillips ◽  
Stephen D. Hopper ◽  
Siegfried L. Krauss

Plants pollinated by vertebrates are often visited by native and exotic insects foraging for pollen and nectar. We compared flower visitation rates, foraging behaviour, and the contribution to reproduction of nectar-feeding birds and the introduced honeybee Apis mellifera in four populations of the bird-pollinated Anigozanthos manglesii (Haemodoraceae). The behaviour of floral visitors was quantified with direct observations and motion-triggered and hand-held cameras. Pollinator access to flowers was manipulated by enclosure in netting to either exclude all visitors or to exclude vertebrate visitors only. Apis mellifera was the only insect observed visiting flowers, and the most frequent flower visitor, but primarily acted as a pollen thief. Although birds visited A. manglesii plants only once per week on average, they were 3.5 times more likely to contact the anther or stigma as foraging honeybees. Exclusion of birds resulted in 67% fewer fruits and 81% fewer seeds than flowers left open and unmanipulated. Unnetted flowers that were open to bird and insect pollinators showed pollen-limitation and a large variation in reproductive output within and between sites. Although honeybees have been shown to pollinate other Australian plants, compared to birds, they are highly inefficient pollinators of A. manglesii.

2004 ◽  
Vol 20 (3) ◽  
pp. 307-316 ◽  
Author(s):  
Nina Farwig ◽  
Emile F. Randrianirina ◽  
Friederike A. Voigt ◽  
Manfred Kraemer ◽  
Katrin Böhning-Gaese

In dioecious plant species differences in morphology and resources between female and male flowers can have consequences for flower visitation rates. Female flowers sometimes lack pollen and can be less attractive to pollinators than male flowers. We studied the pollination ecology of the dioecious tree Commiphora guillauminii in a dry deciduous forest in western Madagascar. We recorded floral display, visiting insect species and visitation rates for female and male trees. The results showed that female trees produce significantly larger but fewer flowers per inflorescence than male ones. Number of flowers per tree did not differ between the sexes. During 270 observation-hours we observed 17 insect and two bird species visiting the flowers. Mean visitation rates of male flowers were 6.1 times higher than those of female flowers (1.07 vs. 0.18 visitors per flower h−1). Visitation rates to female and male trees showed similar daily and seasonal patterns. Fruit set (2.9%) was low, which could have been caused by pollinator or pollen limitation. This study suggests that dioecy may pose a risk for fruit set and, potentially, reproductive success for plant species with depauperate pollinator faunas on islands such as Madagascar.


2006 ◽  
Vol 84 (3) ◽  
pp. 412-420 ◽  
Author(s):  
Vivi-Irèn Hansen ◽  
Ørjan Totland

We looked at whether flower visitation rates, pollen limitation on seed production, and phenotypic selection on flower size through female function varied across a sharp gradient in light intensity (open meadow vs. forest) within a population of the perennial plant Campanula persicifolia L. (Campanulaceae). Flower visitation rates of putative pollinators were similar in both habitats. Seed number per fruit was strongly pollen limited, with no difference in the magnitude of pollen limitation between the two habitats. This strong pollen limitation set the basis for significant phenotypic selection, through female function, on a trait that probably is important for pollinator attraction: flower size. This was revealed by path analysis and structural equation modelling. The lack of difference in pollen limitation on seed production in the two habitats may be explained by the similarity in flower visitation rates in the two habitats. Moreover, the similarity in pollen limitation in the two habitats probably resulted in a similar magnitude and direction of selection on flower size through female function. Our results suggest that pollen limitation and selection through female function may vary little across space within a popualtion despite large variation in the environmental conditions experienced by plants.


2020 ◽  
Author(s):  
Tetsuya K Matsumoto ◽  
Muneto Hirobe ◽  
Masahiro Sueyoshi ◽  
Yuko Miyazaki

Abstract Background and Aims Interspecific difference in pollinators (pollinator isolation) is important for reproductive isolation in flowering plants. Species-specific pollination by fungus gnats has been discovered in several plant taxa, suggesting that they can contribute to reproductive isolation. Nevertheless, their contribution has not been studied in detail, partly because they are too small for field observations during flower visitation. To quantify their flower visitation, we used the genus Arisaema (Araceae) because the pitcher-like spathe of Arisaema can trap all floral visitors. Methods We evaluated floral visitor assemblage in an altitudinal gradient including five Arisaema species. We also examined interspecific differences in altitudinal distribution (geographic isolation) and flowering phenology (phenological isolation). To exclude the effect of interspecific differences in altitudinal distribution on floral visitor assemblage, we established 10 experimental plots including the five Arisaema species on high- and low-altitude areas and collected floral visitors. We also collected floral visitors in three additional sites. Finally, we estimated the strength and contribution of these three reproductive barriers using the unified formula for reproductive isolation. Key Results Each Arisaema species selectively attracted different fungus gnats in the altitudinal gradient, experimental plots, and additional sites. Altitudinal distribution and flowering phenology differed among the five Arisaema species, whereas the strength of geographic and phenological isolations were distinctly weaker than those in pollinator isolation. Nevertheless, the absolute contribution of pollinator isolation to total reproductive isolation was weaker than geographic and phenological isolations, because pollinator isolation functions after the two early-acting barriers in plant life history. Conclusions Our results suggest that selective pollination by fungus gnats potentially contributes to reproductive isolation. Since geographic and phenological isolations can be disrupted by habitat disturbance and interannual climate change, the strong and stable pollinator isolation might compensate for the weakened early-acting barriers as an alternative reproductive isolation among the five Arisaema species.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sandra Kehrberger ◽  
Andrea Holzschuh

Abstract Knowledge on how the timing of flowering is related to plant fitness and species interactions is crucial to understand consequences of phenological shifts as they occur under climate change. Early flowering plants may face advantages of low competition for pollinators and disadvantages of low pollinator abundances and unfavourable weather conditions. However, it is unknown how this trade-off changes over the season and how the timing affects reproductive success. On eight grasslands we recorded intra-seasonal changes in pollinators, co-flowering plants, weather conditions, flower visitation rates, floral longevity and seed set of Pulsatilla vulgaris. Although bee abundances and the number of pollinator-suitable hours were low at the beginning of the season, early flowers of P. vulgaris received higher flower visitation rates and estimated total number of bee visits than later flowers, which was positively related to seed set. Flower visitation rates decreased over time and with increasing number of co-flowering plants, which competed with P. vulgaris for pollinators. Low interspecific competition for pollinators seems to be a major driver for early flowering dates. Thus, non-synchronous temporal shifts of co-flowering plants as they may occur under climate warming can be expected to strongly affect plant-pollinator interactions and the fitness of the involved plants.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Margaret J. Couvillon ◽  
Chandra M. Walter ◽  
Eluned M. Blows ◽  
Tomer J. Czaczkes ◽  
Karin L. Alton ◽  
...  

We quantified insect visitation rates by counting how many flowers/inflorescences were probed per unit time for five plant species (four native and one garden: California lilac, bramble, ragwort, wild marjoram, and ivy) growing in Sussex, United Kingdom, by following individual insects (n=2987) from nine functional groups (honey bees (Apis mellifera), bumble bees (Bombusspp.), hoverflies, flies, butterflies, beetles, wasps, non-Apidae bees, and moths). Additionally, we made a census of the insect diversity on the studied plant species. Overall we found that insect groups differed greatly in their rate of flower visits (P<2.2e-16), with bumble bees and honey bees visiting significantly more flowers per time (11.5 and 9.2 flowers/minute, resp.) than the other insect groups. Additionally, we report on a within-group difference in the non-Apidae bees, where the genusOsmia, which is often suggested as an alternative to honey bees as a managed pollinator, was very speedy (13.4 flowers/minute) compared to the other non-Apidae bees (4.3 flowers/minute). Our census showed that the plants attracted a range of insects, with the honey bee as the most abundant visitor (34%). Therefore, rate differences cannot be explained by particular specializations. Lastly, we discuss potential implications of our conclusions for pollination.


2018 ◽  
Vol 285 (1880) ◽  
pp. 20180635 ◽  
Author(s):  
Matthew H. Koski ◽  
Jennifer L. Ison ◽  
Ashley Padilla ◽  
Angela Q. Pham ◽  
Laura F. Galloway

Seemingly mutualistic relationships can be exploited, in some cases reducing fitness of the exploited species. In plants, the insufficient receipt of pollen limits reproduction. While infrequent pollination commonly underlies pollen limitation (PL), frequent interactions with low-efficiency, exploitative pollinators may also cause PL. In the widespread protandrous herb Campanula americana , visitation by three pollinators explained 63% of the variation in PL among populations spanning the range. Bumblebees and the medium-sized Megachile campanulae enhanced reproductive success, but small solitary bees exacerbated PL. To dissect mechanisms behind these relationships, we scored sex-specific floral visitation, and the contributions of each pollinator to plant fitness using single flower visits. Small bees and M. campanulae overvisited male-phase flowers, but bumblebees frequently visited female-phase flowers. Fewer bumblebee visits were required to saturate seed set compared to other bees. Scaling pollinator efficiency metrics to populations, small bees deplete large amounts of pollen due to highly male-biased flower visitation and infrequent pollen deposition. Thus, small bees reduce plant reproduction by limiting pollen available for transfer by efficient pollinators, and appear to exploit the plant–pollinator mutualism, acting as functional parasites to C. americana . It is therefore unlikely that small bees will compensate for reproductive failure in C. americana when bumblebees are scarce.


2019 ◽  
Vol 65 (No. 12) ◽  
pp. 574-580
Author(s):  
Jan Kazda ◽  
Aneta Bokšová ◽  
Martina Stejskalová ◽  
Tomáš Šubrt ◽  
Jan Bartoška ◽  
...  

Currently, the hybrid cultivars are predominant in the cultivation of winter oilseed rape in Europe. Cultivation of hybrid cultivars instead of the traditional line can affect the visitation of pollinators. Beekeepers and farmers claim that hybrid cultivars are not visited by pollinators as much as the line. Ten yellow and one white flowering oilseed rape cultivars were used to compare the visitation rates of pollinators (Apis mellifera L. and Bombus sp.) during flowering in the years 2015–2017. At the same time, the visitation of hybrid and line cultivars by pollinators was evaluated. Visitation of pollinators on each cultivar was calculated from observed visitations to flowering oilseed rape plants in an area 2.1 m<sup>2</sup> from the edge of single plots for 20 s. The results from this study clearly show that the individual cultivars, whether hybrids or lines, did not have a major influence on the pollinators’ visitation, either by honey bees or bumble bees. It is thus proved that hybrid cultivars do not affect the pollinator visitation and there is no need to worry about the prevalence of these cultivars in the Czech fields. However, a more significant effect for both pollinator groups appears to have been the color of the flower.


Botany ◽  
2017 ◽  
Vol 95 (8) ◽  
pp. 809-817 ◽  
Author(s):  
Ashley M. Hembrough ◽  
Victoria A. Borowicz

Baptisia alba (L.) Vent., an herbaceous, perennial legume, produces more flowers than will mature into pods. Single-year experiments on two reconstructed prairies tested the hypothesis that reproductive potential of B. alba depends on nutrients, but pollen limitation and pre-dispersal seed predation by weevils reduce final production. Ramets were assigned one of four treatments that were combinations of fertilizer (none/70 g fertilizer twice) and insect barrier (none/application of Tanglefoot). Within inflorescences, flowers were naturally pollinated or supplemented with pollen. Fertilizer produced no effects, suggesting that B. alba are unresponsive within a season to nutrient supplementation. Pollen supplementation increased pod initiation at the two sites by 6.7% and 2.3%, respectively, but did not affect the proportion of initiated pods that matured or seed number within pods. Where Tychius sordidus occurred, only 67 pods matured on 19 ramets and only four seeds survived. Where only Trichapion rostrum was present, insect barrier increased pod maturation almost three-fold, but did not affect seed number within pods. Barrier treatment increased the reproductive output of entire ramets by increasing seed production, from 3.6 seeds·ramet−1 to 60.5 seeds·ramet−1. Prairie restoration frequently uses fruit collected from other populations. Managers should be careful to avoid the unintended introduction of voracious seed predators.


Sign in / Sign up

Export Citation Format

Share Document