Metalloligand Strategies for Assembling Heteronuclear Nanocages – Recent Developments

2019 ◽  
Vol 72 (10) ◽  
pp. 731 ◽  
Author(s):  
Feng Li ◽  
Leonard F. Lindoy

The use of metalloligands as building blocks for the assembly of metallo-organic cages has received increasing attention over the past two decades or so. In part, the popularity of this approach reflects its stepwise nature that lends itself to the predesigned construction of metallocages and especially heteronuclear metallocages. The focus of the present discussion is on the use of metalloligands for the construction of discrete polyhedral cages, very often incorporating heterometal ions as structural elements. The metalloligand approach uses metal-bound multifunctional ligand building blocks that display predesigned structural properties for coordination to a second metal ion such that the rational design and construction of both homo- and heteronuclear metal–organic cages are facilitated. The present review covers published literature in the area from early 2015 to early 2019.

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4906
Author(s):  
Jurriën W. Collet ◽  
Thomas R. Roose ◽  
Bram Weijers ◽  
Bert U. W. Maes ◽  
Eelco Ruijter ◽  
...  

Isocyanides have long been known as versatile chemical reagents in organic synthesis. Their ambivalent nature also allows them to function as a CO-substitute in palladium-catalyzed cross couplings. Over the past decades, isocyanides have emerged as practical and versatile C1 building blocks, whose inherent N-substitution allows for the rapid incorporation of nitrogeneous fragments in a wide variety of products. Recent developments in palladium catalyzed isocyanide insertion reactions have significantly expanded the scope and applicability of these imidoylative cross-couplings. This review highlights the advances made in this field over the past eight years.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chao Liu ◽  
Qiang Sun ◽  
Lina Lin ◽  
Jing Wang ◽  
Chaoqi Zhang ◽  
...  

Abstract Assembly of different metal-organic framework (MOF) building blocks into hybrid MOF-on-MOF heterostructures is promising in chemistry and materials science, however the development of ternary MOF-on-MOF heterostructures with controllable architectural and compositional complexity is challenging. Here we report the synthesis of three types of ternary MOF-on-MOF heterostructures via a multiple selective assembly strategy. This strategy relies on the choice of one host MOF with more than one facet that can arrange the growth of a guest MOF, where the arrangement is site-selective without homogenous growth of guest MOF or homogenous coating of guest on host MOF. The growth of guest MOF on a selected site of host MOF in each step provides the opportunity to further vary the combinations of arrangements in multiple steps, leading to ternary MOF-on-MOF heterostructures with tunable complexity. The developed strategy paves the way towards the rational design of intricate and unprecedented MOF-based superstructures for various applications.


ChemInform ◽  
2007 ◽  
Vol 38 (4) ◽  
Author(s):  
Jacilynn A. Brant ◽  
Yunling Liu ◽  
Dorina F. Sava ◽  
Derek Beauchamp ◽  
Mohamed Eddaoudi

1994 ◽  
Vol 371 ◽  
Author(s):  
Omar M. Yaghi ◽  
D. A. Richardson ◽  
G. Li ◽  
C. E. Davis ◽  
T. L. Groy

AbstractThe tetrahedral cluster Ge4S104- and the rodlike ligand 4,4′-bipyridine are utilized in addition copolymerization reactions with the metal (II) ions of Mn, Fe, Co, Cu, and Zn in the preparation of 3-D open-framework solids, MxCol-xGe4S10-2(CH3)4N (x = 0.86, M = Mn; x = 1, M = Mn, Fe, Co, and Zn), 1, and Cu(4,4′-bpy)2. PF6, 2, having diamond-like structures. These structures are viewed in terms of the cubic diamond structure, where the carbon atoms have been replaced by either a cluster or a metal ion and the C-C bond by a sulfide or the 4,4′-bpy. These compounds have been fully characterized by single crystal x-ray crystallography and their composition was confirmed by elemental analysis; they contain 3-D channel systems where cations or anions reside to balance the charge on the framework.


2021 ◽  
Author(s):  
Bakytzhan Yeskendir ◽  
Jean-Philippe Dacquin ◽  
Yannick Lorgouilloux ◽  
Christian Courtois ◽  
Sebastien Royer ◽  
...  

Metal-organic frameworks represent a class of porous materials which developed considerably over the past few years. Their porous structure makes them outperforming conventional adsorbents in hot topics such as dihydrogen...


2021 ◽  
Vol 8 (3) ◽  
pp. 20210304
Author(s):  
Semyon Bachinin ◽  
Venera Gilemkhanova ◽  
Maria Timofeeva ◽  
Yuliya Kenzhebayeva ◽  
Andrei Yankin ◽  
...  

Metal-organic frameworks (MOFs), being a family of highly crystalline and porous materials, have attracted particular attention in material science due to their unprecedented chemical and structural tunability. Next to their application in gas adsorption, separation, and storage, MOFs also can be utilized for energy transfer and storage in batteries and supercapacitors. Based on recent studies, this review describes the latest developments about MOFs as structural elements of metal-ion battery with a focus on their industry-oriented and large-scale production.


2007 ◽  
Vol 79 (12) ◽  
pp. 2155-2177 ◽  
Author(s):  
Tapas Kumar Maji ◽  
Susumu Kitagawa

Remarkable advances in the recent development of porous compounds based upon coordination polymers have paved the way toward functional chemistry having potential applications such as gas storage, separation, and catalysis. From the synthetic point of view, the advantage is a designable framework, which can readily be constructed from building blocks, the so-called bottom-up assembly. Compared with conventional porous materials such as zeolites and activated carbons, porous inorganic-organic hybrid frameworks have higher potential for adsorption of small molecules because of their designability with respect to the coordination geometry around the central metal ion as well as size and probable multifunctionality of bridging organic ligands. Although rigidity and robustness of porous framework with different degree of adsorption are the most studied properties of metal-organic coordination frameworks, there are few studies on dynamic porous frameworks, which could open up a new dimension in materials chemistry.


Biosensors ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 299
Author(s):  
Xiangdong Lai ◽  
Hui Jiang ◽  
Xuemei Wang

Though there already had been notable progress in developing efficient therapeutic strategies for cancers, there still exist many requirements for significant improvement of the safety and efficiency of targeting cancer treatment. Thus, the rational design of a fully biodegradable and synergistic bioimaging and therapy system is of great significance. Metal organic framework (MOF) is an emerging class of coordination materials formed from metal ion/ion clusters nodes and organic ligand linkers. It arouses increasing interest in various areas in recent years. The unique features of adjustable composition, porous and directional structure, high specific surface areas, biocompatibility, and biodegradability make it possible for MOFs to be utilized as nano-drugs or/and nanocarriers for multimodal imaging and therapy. This review outlines recent advances in developing MOFs for multimodal treatment of cancer and discusses the prospects and challenges ahead.


2019 ◽  
Vol 5 (5) ◽  
pp. eaav4119 ◽  
Author(s):  
Eunji Jin ◽  
In Seong Lee ◽  
Dongwook Kim ◽  
Hosoowi Lee ◽  
Woo-Dong Jang ◽  
...  

Mechanical metamaterials exhibit unusual properties, such as negative Poisson’s ratio, which are difficult to achieve in conventional materials. Rational design of mechanical metamaterials at the microscale is becoming popular partly because of the advance in three-dimensional printing technologies. However, incorporating movable building blocks inside solids, thereby enabling us to manipulate mechanical movement at the molecular scale, has been a difficult task. Here, we report a metal-organic framework, self-assembled from a porphyrin linker and a new type of Zn-based secondary building unit, serving as a joint in a hinged cube tessellation. Detailed structural analysis and theoretical calculation show that this material is a mechanical metamaterial exhibiting auxetic behavior. This work demonstrates that the topology of the framework and flexible hinges inside the structure are intimately related to the mechanical properties of the material, providing a guideline for the rational design of mechanically responsive metal-organic frameworks.


CrystEngComm ◽  
2020 ◽  
Vol 22 (17) ◽  
pp. 2889-2894 ◽  
Author(s):  
Peng Yang ◽  
Buthainah Alshankiti ◽  
Niveen M. Khashab

Intrinsically porous molecular building blocks are used for the rational design and construction of molecular-level controlled porous materials.


Sign in / Sign up

Export Citation Format

Share Document