Solvent effects on the infrared spectra of anilines. VII. 2-Substituted 4-nitroanilines

1970 ◽  
Vol 23 (5) ◽  
pp. 947 ◽  
Author(s):  
LK Dyall

Measurements of N-H stretching frequencies of 4-nitroanilines in the presence of hydrogen bond acceptors show that the ease of forming a second intermolecular hydrogen bond in the presence of an ortho substituent decreases in the order hydrogen > methyl > bromo, methoxyl > nitro. This order demonstrates the importance of repulsions between lone pair orbitals on the ortho substituent and the acceptor molecule. Weak intramolecular hydrogen bonds are detected in 2-iodo- and 2-bromo-aniline, and such bonds can be strengthened by introduction of a 4-nitro substituent.

2018 ◽  
Author(s):  
Sjors Bakels ◽  
E.M. Meijer ◽  
Mart Greuell ◽  
Sebastiaan Porskamp ◽  
George Rouwhorst ◽  
...  

Peptide aggregation, the self-assembly of peptides into structured beta-sheet fibril structures, is driven by a combination of intra- and intermolecular interactions. Here, the interplay between intramolecular and formed inter-sheet hydrogen bonds and the effect of dispersion interactions on the formation of neutral, isolated, peptide dimers is studied by infrared action spectroscopy. Therefore, four different homo- and hetereogeneous dimers formed from three different alanine-based model peptides have been studied under controlled and isolated conditions. The peptides differ from one another in the presence and location of a UV chromophore containing cap on either the C- or N-terminus. Conformations of the monomers of the peptides direct the final dimer structure: strongly hydrogen bonded or folded structures result in weakly bound dimers. Here the intramolecular hydrogen bonds are favored over new intermolecular hydrogen bond interactions. In contrast, linearly folded monomers are the ideal template to form parallel beta-sheet type structures. The weak intramolecular hydrogen bonds present in the linear monomers are replaced by the stronger inter-sheet hydrogen bond interactions. The influence of π-π disperion interactions on the structure of the dimer is minimal, the phenyl rings have the tendency to fold away from the peptide backbone to favour intermolecular hydrogen bond interactions. Quantum chemical calculations confirm our experimental observations.


2018 ◽  
Author(s):  
Sjors Bakels ◽  
E.M. Meijer ◽  
Mart Greuell ◽  
Sebastiaan Porskamp ◽  
George Rouwhorst ◽  
...  

Peptide aggregation, the self-assembly of peptides into structured beta-sheet fibril structures, is driven by a combination of intra- and intermolecular interactions. Here, the interplay between intramolecular and formed inter-sheet hydrogen bonds and the effect of dispersion interactions on the formation of neutral, isolated, peptide dimers is studied by infrared action spectroscopy. Therefore, four different homo- and hetereogeneous dimers formed from three different alanine-based model peptides have been studied under controlled and isolated conditions. The peptides differ from one another in the presence and location of a UV chromophore containing cap on either the C- or N-terminus. Conformations of the monomers of the peptides direct the final dimer structure: strongly hydrogen bonded or folded structures result in weakly bound dimers. Here the intramolecular hydrogen bonds are favored over new intermolecular hydrogen bond interactions. In contrast, linearly folded monomers are the ideal template to form parallel beta-sheet type structures. The weak intramolecular hydrogen bonds present in the linear monomers are replaced by the stronger inter-sheet hydrogen bond interactions. The influence of π-π disperion interactions on the structure of the dimer is minimal, the phenyl rings have the tendency to fold away from the peptide backbone to favour intermolecular hydrogen bond interactions. Quantum chemical calculations confirm our experimental observations.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Sergei Vdovenko ◽  
Igor Gerus ◽  
Elena Fedorenko ◽  
Valery Kukhar

The accurate analysis of infrared spectra (both wavenumbers and intensities) of (E)-4-(dimethylamino)-1,1,1-trifluorobut-3-en-2-one (DMTBN) and (E)-4-(hexadeutero-dimethylamino)-1,1,1-trifluorobut-3-en-2-one (d6-DMTBN) revealed that besides intramolecular hydrogen bond in the (EE) conformer, these enaminoketones form cyclic dimers between the (EZ) and (EE) conformers due to intermolecular hydrogen bonds, namely, O=C and . Evaluation of constant and enthalpy of formation of these H-bonds revealed that O=C bond has greater and more negative than bond (cf. 214.4 M−1, −21.7 kJ M−1dm3, and 16.4 M−1, −6.7 kJ M−1dm3, resp.). Consequently, stronger H-bond ⋯O=C is formed in the first place, whereas weaker H-bond is formed afterward. Moreover, formation of intermolecular hydrogen bond has influence on C–F vibrations, but analysis of this influence must take into account the fact that these vibrations in some cases are coupled with . True enthalpy of the equilibrium (EZ)⇌(EE) is positive (25.3 kJ M−1dm3), thus confirming results of DFT calculations, according to which the (EZ) conformer is more stable than the (EE) one.


2016 ◽  
Vol 72 (2) ◽  
pp. 139-142 ◽  
Author(s):  
Paul Jurek ◽  
Joseph H. Reibenspies ◽  
Garry E. Kiefer

1,4,8,11-Tetraazabicyclo[6.6.2]hexadecane-4,11-diacetic acid (CB-TE2A) is of much interest in nuclear medicine for its ability to form copper complexes that are kinetically inert, which is beneficialin vivoto minimize the loss of radioactive copper. The structural chemistry of the hydrated HCl salt of CB-TE2A, namely 11-carboxymethyl-1,8-tetraaza-4,11-diazoniabicyclo[6.6.2]hexadecane-4-acetate chloride trihydrate, C16H31N4O4+·Cl−·3H2O, is described. The compound crystallized as a positively charged zwitterion with a chloride counter-ion. Two of the amine groups in the macrocyclic ring are protonated. Formally, a single negative charge is shared between two of the carboxylic acid groups, while one chloride ion balances the charge. Two intramolecular hydrogen bonds are observed between adjacent pairs of N atoms of the macrocycle. Two intramolecular hydrogen bonds are also observed between the protonated amine groups and the pendant carboxylate groups. A short intermolecular hydrogen bond is observed between two partially negatively charged O atoms on adjacent macrocycles. The result is a one-dimensional polymeric zigzag chain that propagates parallel to the crystallographicadirection. A second intermolecular interaction is a hydrogen-bonding network in the crystallographicbdirection. The carbonyl group of one macrocycle is connected through the three water molecules of hydration to the carbonyl group of another macrocycle.


2022 ◽  
Author(s):  
Asia Marie S Riel ◽  
Daniel Adam Decato ◽  
Jiyu Sun ◽  
Orion Berryman

Recent results indicate a halogen bond donor is strengthened through direct interaction with a hydrogen bond to the electron-rich belt of the halogen. Here, this Hydrogen Bond enhanced Halogen Bond...


1967 ◽  
Vol 45 (19) ◽  
pp. 2135-2141 ◽  
Author(s):  
P. J. Krueger

The infrared absorption spectra of partially deuterated o-phenylenediamine and 4,5-di-methyl-, 4-methyl-, and 4-chloro-o-phenylenediamine in dilute CCl4 solution show double intramolecular [Formula: see text] hydrogen bonds in which the two NHD groups are equivalent and each group acts as both a proton donor and a proton acceptor. The ring substituent effect on this interaction in these compounds is small. In 4-methoxy-o-phenylenediamine, the amino groups are not equivalent, but double intramolecular hydrogen bonds are still present. In 4-nitro-o-phenylenediamine, only one intramolecular [Formula: see text] hydrogen bond appears to exist. The effect of N-substitution on some of these observations is discussed.


Author(s):  
Alexander Yu. Kostritskiy ◽  
◽  
Marina G. Nakonechnikova ◽  
Olga V. Fedotova ◽  
Nina V. Pchelintseva ◽  
...  

The possibility of obtaining asymmetric 1,5-diketones based on 4-hydroxy-2H-chromen-2-one and dimedone by three-component condensation in the presence of L-proline as a catalyst is shown. As a result, a series of 4-hydroxy3 - ((2-hydroxy-4,4-dimethyl-6-oxocyclohex1-en-1-yl) (aryl) methyl) -2H-chromen-2-ones was obtained with a yield of 25 up to 73%. The study revealed that the highest yield was observed for compounds containing fragments of ortho-substituted aldehydes capable of forming a hydrogen bond. For meta- and para-substituted – the lowest yield was observed. In the case of ortho-substitution this can be probably explained due to the stabilization of the intermediate complex by two intramolecular hydrogen bonds, which makes it possible to selectively obtain only one final product – 4-hydroxy-3 -((2-hydroxy4,4-dimethyl-6-oxocyclohex-1- en-1-yl) (aryl) methyl) -2Hchromen-2-one. The structure of the obtained products was confirmed by 1 H, 13C NMR, HSQC, HMBC spectroscopy. Considering the 1,5-diketone fragment for the above-described compounds, the possibility of their O-heterocyclization by propionic anhydride was suggested. Boiling 4-hydroxy-3 - ((2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl) (aryl) methyl) -2Hchromen-2-ones in anhydride medium for an hour resulted in obtaining a series of 7- (aryl) -10,10-dimethyl-7,9,10,11-tetrahydro-6H, 8H-chromeno [4,3-b] chromene-6,8-diones. Their structure was also confirmed by 1 H, 13C NMR, HSQC, HMBC spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document