Hydrophobic interaction between the bile acids and long-chain alkyltrimethylammonium ions: A model for cholesterol-lipid interaction

1977 ◽  
Vol 30 (2) ◽  
pp. 335 ◽  
Author(s):  
DG Oakenfull ◽  
DE Fenwick

Ion-pair association constants (K) for long-chain alkyltrimethylammonium salts of the bile acids have been measured conductometrically at 25°C in 0.1 mole fraction ethanol-water. The free energy of ion-pair formation (ΔG°ip = -RT ln K) was separated into its electrostatic and hydrophobic components by examining the effect of alkyl chain length on ΔG°ip. The electrostatic contribution was the same for each bile acid and agreed with the value previously obtained for long-chain alkyltrimethyl-ammonium carboxylate ion pairs under the same conditions. The hydrophobic contribution depended on the structure of the bile acid and varied linearly with the number of OH groups. (There are no significant attractive forces between non-polar groups in water. Hydrophobic interaction is the tendency of non-polar groups to associate because this minimizes their energetically unfavourable contact with water.) Our results support current theories of hydrophobic interaction and give an indication of the extent of the effect of neighbouring polar groups on hydrophobic interaction. Extrapolation to zero OH groups gave an estimate of the free energy of hydrophobic interaction (ΔG°HI) between an alkyl chain and a cholesterol analogue (a steroid ring system with a single polar substituent). This value of ΔG°HI was -2.77 kJ mol-1 per methylene group compared with -2.24 kJ mol-1 per methylene group for hydrophobic interaction between two alkyl chains. (The small difference is explained by the greater number of water molecules displaced in an alkyl-steroid contact than in an alkyl-alkyl contact.) This result conflicts with claims made by other workers that the steroid-alkyl interaction is weak, or that cholesterol is less hydrophobic than its structure indicates.

1983 ◽  
Vol 214 (3) ◽  
pp. 923-927 ◽  
Author(s):  
D A Vessey ◽  
J Whitney ◽  
J L Gollan

Shortening the five-carbon carboxylic acid side chain of cholic acid by one methylene group gave rise to a bile acid (norcholate) that was not a substrate for the bile acid-conjugating enzymes. The metabolism and biliary secretion of norcholate in intact liver was examined in the isolated perfused rat liver system. When rat livers were perfused with 14-20 microM solutions of norcholate for 10 min, norcholate was found in the unconjugated form in liver, venous effluent and bile. Neither tauronorcholate nor glyconorcholate was detectable by high-pressure liquid chromatography or fast-atom-bombardment mass spectrometry. The kinetics of hepatic uptake and biliary secretion of norcholate was compared with that for cholate, taurocholate and chemically synthesized tauronorcholate. The latter three bile acids were completely cleared from the perfusate and efficiently secreted into the bile. However, norcholate was incompletely extracted from the perfusate, and this was shown to be at least partially due to its relatively lower rate of hepatic uptake. Furthermore, the rate of norcholate secretion into bile was greatly reduced relative to the secretion of cholate or chemically synthesized tauronorcholate, even though the concentration of norcholate in the liver was comparatively high. These data demonstrate that the conjugation of bile acids greatly facilitates their secretion into bile.


1977 ◽  
Vol 30 (4) ◽  
pp. 741 ◽  
Author(s):  
DG Oakenfull ◽  
DE Fenwick

.In the mixed solvent, 0.1 mole fraction ethanol-water, long-chain decyltrimethylammonium carboxylates form ion pairs. Ion-pair association constants (and hence the free energy of ion-pair formation) can be measured conductometrically. It is possible to separate the hydrophobic from the electrostatic contribution to the free energy of ion-pair formation by systematically varying the hydrocarbon chain length. We report measurements of the free energy of hydrophobic interaction (ΔG°HI) over the temperature range 278-328 K. The value of ΔG°HI becomes more negative (stronger hydrophobic interaction) with increasing temperature. The temperature coefficient of ΔG°HI was used to calculate the enthalpy (ΔH°HI) and entropy (ΔS°HI) of hydrophobic interaction. At low temperature the entropic contribution to the free energy is the larger but ΔH°HI, dominates at temperatures above c. 324 K. The volume change of hydrophobic interaction was similarly estimated from the volume change of ion-pair formation. We obtained values of apparent molar volume of the decyltrimethylammonium carboxylates (over a range of concentrations) from very precise density measurements. These could then be combined with the appropriate ion-pair association constant (from the conductance measurements) to give the partial molar volumes of the free ions and the ion pair. Hydrophobic interaction was found to be accompanied by a substantial increase in volume amounting to 10.2 ± 0.3 ml mol-1 for each pair of interacting methylene groups. Our results support the view that hydrophobic interaction occurs with a further ordering of water molecules over and above that which exists in the hydrophobic hydration layer surrounding an isolated hydrophobic molecule.


2011 ◽  
Vol 76 (2) ◽  
pp. 189-199 ◽  
Author(s):  
Mihalj Posa ◽  
Valéria Guzsvány ◽  
Momir Mikov ◽  
Janos Canadi

It is known that certain bile acids have a promotive effect on the action of some drugs. Special attention is paid to bile acids having oxo groups instead of OH groups in the steroid skeleton of their molecule, since these derivatives have a lower hemolytic potential (membrane toxicity). This study examined the effects of sodium salts of 3?,12?-dihydroxy-7-oxo-5?-cholanoic acid (7-oC) and 3,7,12-trioxo-5?- cholanoic acid (3,7,12-toC) on the adsorption of verapamil hydrochloride on activated carbon (model of the cell membrane). The interaction was followed by measuring the effect of verapamil on the functional dependence between the spin-lattice relaxation time T1 (protons of the C18 angular group of the bile acid molecule) and the bile acid concentration in deuterated chloroform (model of the cell membrane lipid phase). Whether a depot effect of verapamil exists when 7-oC and 3,7,12-toC (in the form of methyl esters) are present in chloroform was also investigated. It was found that 7-oC exhibited a significant effect in the experiments with verapamil, whereas 3,7,12-toC showed no difference of the measured parameters with respect to the control. This indicates that bile acid molecules should have OH groups bound to the steroid nucleus, in order to exhibit an effect on the monitored physico-chemical parameters of verapamil.


1987 ◽  
Vol 252 (3) ◽  
pp. G339-G344 ◽  
Author(s):  
S. Bellentani ◽  
W. G. Hardison ◽  
P. Marchegiano ◽  
G. Zanasi ◽  
F. Manenti

To define further the structural specificity of the taurocholate uptake site, we studied the ability of a variety of taurine-conjugated bile acids with differing hydroxyl substituents on the sterol moiety to inhibit [14C]taurocholate uptake. Rat hepatocytes isolated by collagenase perfusion were incubated in a tris(hydroxymethyl)aminomethane-phosphate buffer containing [14C]taurocholate (2.5-100 microM) in the presence or absence of inhibitor bile acid. Stronger inhibitors were studied at a fixed concentration of 5 microM, weaker ones at 25 microM. Initial uptake velocity was measured by sedimenting an aliquot of cells through silicone oil into 3 N KOH every 15 s for 1 min. Uptake velocity (nmol X mg protein-1 X min-1) could then be related to taurocholate concentration and a Vmax and Km could be determined by applying a nonlinear least squares fit to the data obtained with or without inhibitor. The kinetic parameters allowed the determination of the type of inhibition and of inhibition constants (Ki) of the various test bile acids. The data indicate that bile acids containing a 6- or 7-OH group exhibit competitive inhibition, whereas bile acids with no 6- or 7-OH group exhibit noncompetitive inhibition. Of the compounds exhibiting competitive inhibition, Ki varied with the number of hydroxyl groups on the sterol moiety. We conclude that the presence or absence of a 6- or 7-OH group dictates the mechanism of inhibition; the number of hydroxyl substituents determines the potency of competitive inhibition.


2020 ◽  
Vol 16 ◽  
Author(s):  
Armin Mooranian ◽  
Nassim Zamani ◽  
Bozica Kovacevic ◽  
Corina Mihaela Ionescu ◽  
Giuseppe Luna ◽  
...  

Aim: Examine bile acids effects in Type 2 diabetes. Background: In recent studies, the bile acid ursodeoxycholic acid (UDCA) has shown potent anti-inflammatory effects in obese patients while in type 2 diabetics (T2D) levels of the pro-inflammatory bile acid lithocholic acid were increased, and levels of the anti-inflammatory bile acid chenodeoxycholic acid were decreased, in plasma. Objective: Hence, this study aimed to examine applications of novel UDCA nanoparticles in diabetes. Methods: Diabetic balb/c adult mice were divided into three equal groups and gavaged daily with either empty microcapsules, free UDCA, or microencapsulated UDCA over two weeks. Their blood, tissues, urine, and faeces were collected for blood glucose, inflammation, and bile acid analyses. UDCA resulted in modulatory effects on bile acids profile without antidiabetic effects suggesting that bile acid modulation was not directly linked to diabetes treatment. Results: UDCA resulted in modulatory effects on bile acids profile without antidiabetic effects suggesting that bile acid modulation was not directly linked to diabetes treatment. Conclusion: Bile acids modulated the bile profile without affecting blood glucose levels.


2021 ◽  
Vol 12 (2) ◽  
pp. 335-353
Author(s):  
Evette B. M. Hillman ◽  
Sjoerd Rijpkema ◽  
Danielle Carson ◽  
Ramesh P. Arasaradnam ◽  
Elizabeth M. H. Wellington ◽  
...  

Bile acid diarrhoea (BAD) is a widespread gastrointestinal disease that is often misdiagnosed as irritable bowel syndrome and is estimated to affect 1% of the United Kingdom (UK) population alone. BAD is associated with excessive bile acid synthesis secondary to a gastrointestinal or idiopathic disorder (also known as primary BAD). Current licensed treatment in the UK has undesirable effects and has been the same since BAD was first discovered in the 1960s. Bacteria are essential in transforming primary bile acids into secondary bile acids. The profile of an individual’s bile acid pool is central in bile acid homeostasis as bile acids regulate their own synthesis. Therefore, microbiome dysbiosis incurred through changes in diet, stress levels and the introduction of antibiotics may contribute to or be the cause of primary BAD. This literature review focuses on primary BAD, providing an overview of bile acid metabolism, the role of the human gut microbiome in BAD and the potential options for therapeutic intervention in primary BAD through manipulation of the microbiome.


2021 ◽  
Vol 22 (14) ◽  
pp. 7451
Author(s):  
Harpreet Kaur ◽  
Drew Seeger ◽  
Svetlana Golovko ◽  
Mikhail Golovko ◽  
Colin Kelly Combs

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive cognitive impairment. It is hypothesized to develop due to the dysfunction of two major proteins, amyloid-β (Aβ) and microtubule-associated protein, tau. Evidence supports the involvement of cholesterol changes in both the generation and deposition of Aβ. This study was performed to better understand the role of liver cholesterol and bile acid metabolism in the pathophysiology of AD. We used male and female wild-type control (C57BL/6J) mice to compare to two well-characterized amyloidosis models of AD, APP/PS1, and AppNL-G-F. Both conjugated and unconjugated primary and secondary bile acids were quantified using UPLC-MS/MS from livers of control and AD mice. We also measured cholesterol and its metabolites and identified changes in levels of proteins associated with bile acid synthesis and signaling. We observed sex differences in liver cholesterol levels accompanied by differences in levels of synthesis intermediates and conjugated and unconjugated liver primary bile acids in both APP/PS1 and AppNL-G-F mice when compared to controls. Our data revealed fundamental deficiencies in cholesterol metabolism and bile acid synthesis in the livers of two different AD mouse lines. These findings strengthen the involvement of liver metabolism in the pathophysiology of AD.


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1104
Author(s):  
Cong Xie ◽  
Weikun Huang ◽  
Richard L. Young ◽  
Karen L. Jones ◽  
Michael Horowitz ◽  
...  

Bile acids are cholesterol-derived metabolites with a well-established role in the digestion and absorption of dietary fat. More recently, the discovery of bile acids as natural ligands for the nuclear farnesoid X receptor (FXR) and membrane Takeda G-protein-coupled receptor 5 (TGR5), and the recognition of the effects of FXR and TGR5 signaling have led to a paradigm shift in knowledge regarding bile acid physiology and metabolic health. Bile acids are now recognized as signaling molecules that orchestrate blood glucose, lipid and energy metabolism. Changes in FXR and/or TGR5 signaling modulates the secretion of gastrointestinal hormones including glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), hepatic gluconeogenesis, glycogen synthesis, energy expenditure, and the composition of the gut microbiome. These effects may contribute to the metabolic benefits of bile acid sequestrants, metformin, and bariatric surgery. This review focuses on the role of bile acids in energy intake and body weight, particularly their effects on gastrointestinal hormone secretion, the changes in obesity and T2D, and their potential relevance to the management of metabolic disorders.


Sign in / Sign up

Export Citation Format

Share Document