Pharmacological effects of secondary bile acid microparticles in diabetic murine model

2020 ◽  
Vol 16 ◽  
Author(s):  
Armin Mooranian ◽  
Nassim Zamani ◽  
Bozica Kovacevic ◽  
Corina Mihaela Ionescu ◽  
Giuseppe Luna ◽  
...  

Aim: Examine bile acids effects in Type 2 diabetes. Background: In recent studies, the bile acid ursodeoxycholic acid (UDCA) has shown potent anti-inflammatory effects in obese patients while in type 2 diabetics (T2D) levels of the pro-inflammatory bile acid lithocholic acid were increased, and levels of the anti-inflammatory bile acid chenodeoxycholic acid were decreased, in plasma. Objective: Hence, this study aimed to examine applications of novel UDCA nanoparticles in diabetes. Methods: Diabetic balb/c adult mice were divided into three equal groups and gavaged daily with either empty microcapsules, free UDCA, or microencapsulated UDCA over two weeks. Their blood, tissues, urine, and faeces were collected for blood glucose, inflammation, and bile acid analyses. UDCA resulted in modulatory effects on bile acids profile without antidiabetic effects suggesting that bile acid modulation was not directly linked to diabetes treatment. Results: UDCA resulted in modulatory effects on bile acids profile without antidiabetic effects suggesting that bile acid modulation was not directly linked to diabetes treatment. Conclusion: Bile acids modulated the bile profile without affecting blood glucose levels.

2020 ◽  
Vol 16 (8) ◽  
pp. 900-909
Author(s):  
Armin Mooranian ◽  
Nassim Zamani ◽  
Ryu Takechi ◽  
Giuseppe Luna ◽  
Momir Mikov ◽  
...  

Background: Recent studies have suggested that hyperglycaemia influences the bile acid profile and concentrations of secondary bile acids in the gut. Introduction: This study aimed to measure changes in the bile acid profile in the gut, tissues, and faeces in type 1 Diabetes (T1D) and Type 2 Diabetes (T2D). Method: T1D and T2D were established in a mouse model. Twenty-one seven-weeks old balb/c mice were randomly divided into three equal groups, healthy, T1D and T2D. Blood, tissue, urine and faeces samples were collected for bile acid measurements. Results: Compared with healthy mice, T1D and T2D mice showed lower levels of the primary bile acid, chenodeoxycholic acid, in the plasma, intestine, and brain, and higher levels of the secondary bile acid, lithocholic acid, in the plasma and pancreas. Levels of the bile acid ursodeoxycholic acid were undetected in healthy mice but were found to be elevated in T1D and T2D mice. Conclusion: Bile acid profiles in other organs were variably influenced by T1D and T2D development, which suggests similarity in effects of T1D and T2D on the bile acid profile, but these effects were not always consistent among all organs, possibly since feedback mechanisms controlling enterohepatic recirculation and bile acid profiles and biotransformation are different in T1D and T2D.


2017 ◽  
Vol 312 (6) ◽  
pp. G550-G558 ◽  
Author(s):  
Joseph B. J. Ward ◽  
Natalia K. Lajczak ◽  
Orlaith B. Kelly ◽  
Aoife M. O’Dwyer ◽  
Ashwini K. Giddam ◽  
...  

Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1β, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic inflammation and suggest that microbial metabolism of UDCA is necessary for the full expression of its protective actions. NEW & NOTEWORTHY On the basis of its cytoprotective and anti-inflammatory actions, the secondary bile acid ursodeoxycholic acid (UDCA) has well-established uses in both traditional and Western medicine. We identify a new role for the primary metabolite of UDCA, lithocholic acid, as a potent inhibitor of intestinal inflammatory responses, and we present data to suggest that microbial metabolism of UDCA is necessary for the full expression of its protective effects against colonic inflammation.


2021 ◽  
Author(s):  
Donggi Paik ◽  
Lina Yao ◽  
Yancong Zhang ◽  
Sena Bae ◽  
Gabriel D. D'Agostino ◽  
...  

The microbiota plays a pivotal role in gut immune homeostasis. Bacteria influence the development and function of host immune cells, including T helper cells expressing interleukin-17a (TH17 cells). We previously reported that the bile acid metabolite 3-oxolithocholic acid (3-oxoLCA) inhibits TH17 cell differentiation. While it was suggested that gut-residing bacteria produce 3-oxoLCA, the identity of such bacteria was unknown. Furthermore, it was not clear whether 3-oxoLCA and other immunomodulatory bile acids are associated with gut inflammatory pathologies in humans. Using a high-throughput screen, we identified human gut bacteria and corresponding enzymes that convert the secondary bile acid lithocholic acid into 3-oxoLCA as well as the abundant gut metabolite isolithocholic acid (isoLCA). Like 3-oxoLCA, isoLCA suppressed TH17 differentiation by inhibiting RORγt (retinoic acid receptor-related orphan nuclear receptor γt), a key TH17 cell-promoting transcription factor. Levels of both 3-oxoLCA and isoLCA and the 3α-hydroxysteroid dehydrogenase (3α-HSDH) genes required for their biosynthesis were significantly reduced in patients with inflammatory bowel diseases (IBD). Moreover, levels of these bile acids were inversely correlated with expression of TH17 cell-associated genes. Overall, our data suggest that bacterially produced TH17 cell-inhibitory bile acids may reduce the risk of autoimmune and inflammatory disorders such as IBD.


2017 ◽  
Vol 68 (2) ◽  
pp. 378-383
Author(s):  
Ana Maria Pelin ◽  
Cristian Catalin Gavat ◽  
Gabriela Balan ◽  
Costinela Valerica Georgescu

This study assessed the medication used in type 2 diabetes treatment, depending on the glycaemia level and set out the oral anti-diabetics which are recommended, in three study stages: admission, hospitalization and discharge. Eighty patients were selected and diagnosed with diabetes mellitus 2 type, who were registered in the diabetes and nutrition diseases department within Sf. Apostol Andrei Galati Hospital. They were subjected to a series of laboratory tests: blood count, glycosylated haemoglobin, glycaemia level. It were established main classes of anti-diabetic drugs outpatient used and the main types of anti-diabetic agents administrated to patients requiring hospitalization, compared to high glycaemia values. It was given also, the medication used to normalize blood glucose levels during hospitalization and also at discharge. The biguanides associated with sulphonylureas drugs did not provide an adequate glycaemia control, so insulin must be combined with Metformin to normalize blood glucose levels as soon as possible. Glycaemia control was improved and the hypoglycaemia risk was reduced regarding obese patient undergoing treatment with insulin, to whom biguanides were administered.


2020 ◽  
Author(s):  
Kenya Honda ◽  
Yuko Sato ◽  
Koji Atarashi ◽  
Damian Plichta ◽  
Yasumichi Arai ◽  
...  

Abstract Centenarians, or individuals who have lived more than a century, represent the ultimate model of successful longevity associated with decreased susceptibility to ageing-associated illness and chronic inflammation. The gut microbiota is considered to be a critical determinant of human health and longevity. Here we show that centenarians (average 107 yo) have a distinct gut microbiome enriched in microbes capable of generating unique secondary bile acids, including iso-, 3-oxo-, and isoallo-lithocholic acid (LCA), as compared to elderly (85-89 yo) and young (21-55 yo) controls. Among these bile acids, the biosynthetic pathway for isoalloLCA had not been described previously. By screening 68 bacterial isolates from a centenarian’s faecal microbiota, we identified Parabacteroides merdae and Odoribacteraceae strains as effective producers of isoalloLCA. Furthermore, we generated and tested mutant strains of P. merdae to show that the enzymes 5α-reductase (5AR) and 3β-hydroxysteroid dehydrogenase (3βHSDH) were responsible for isoalloLCA production. This secondary bile acid derivative exerted the most potent antimicrobial effects among the tested bile acid compounds against gram-positive (but not gram-negative) multidrug-resistant pathogens, including Clostridioides difficile and vancomycin-resistant Enterococcus faecium. These findings suggest that specific bile acid metabolism may be involved in reducing the risk of pathobiont infection, thereby potentially contributing to longevity.


1993 ◽  
Vol 291 (2) ◽  
pp. 429-433 ◽  
Author(s):  
T K H Chang ◽  
J Teixeira ◽  
G Gil ◽  
D J Waxman

CYP 3A10 is a hamster liver cytochrome P-450 (P450) that encodes lithocholic acid 6 beta-hydroxylase, an enzyme that plays an important role in the detoxification of the cholestatic secondary bile acid lithocholate. Western-blot analysis revealed that the expression of CYP 3A10 protein is male-specific in hamster liver microsomes, a finding that is consistent with earlier analysis of CYP 3A10 mRNA. Since it has not been established whether the specificities of bile acid hydroxylase P450s, such as CYP 3A10, are restricted to their anionic bile acid substrates, we investigated the role of CYP 3A10 in the metabolism of a series of neutral steroid hormones using cDNA directed-expression in COS cells. The steroid hormones examined, testosterone, androstenedione and progesterone, were each metabolized by the expressed CYP 3A10, with 6 beta-hydroxylation corresponding to a major activity in all three instances. CYP 3A10-dependent steroid hydroxylation was increased substantially when the microsomes were prepared from COS cells co-transfected with NADPH:P450 reductase cDNA. In this case, the expressed P450 actively catalysed the 6 beta-hydroxylation of testosterone (288 +/- 23 pmol of product formed/min per mg of COS-cell microsomal protein), androstenedione (107 +/- 19 pmol/min per mg) and progesterone (150 +/- 7 pmol/min per mg). Other major CYP 3A10-mediated steroid hydroxylase activities included androstenedione 16 alpha-hydroxylation, progesterone 16 alpha- and 21-hydroxylation, and the formation of several unidentified products. CYP 3A10 exhibited similar Vmax. values for the 6 beta-hydroxylation of androstenedione and lithocholic acid (132 and 164 pmol/min per mg respectively), but metabolized the bile acid with a 3-fold lower Km (25 microM, as against 75 microM for androstenedione). Together, these studies establish that the substrate specificity of the bile acid hydroxylase CYP 3A10 is not restricted to bile acids, and further suggest that CYP 3A10 can play a physiologically important role in the metabolism of two classes of endogenous P450 substrates:steroid hormones and bile acids.


Metabolites ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 29
Author(s):  
Peipei Li ◽  
Bryan A. Killinger ◽  
Elizabeth Ensink ◽  
Ian Beddows ◽  
Ali Yilmaz ◽  
...  

The gut microbiome can impact brain health and is altered in Parkinson’s disease (PD). The vermiform appendix is a lymphoid tissue in the cecum implicated in the storage and regulation of the gut microbiota. We sought to determine whether the appendix microbiome is altered in PD and to analyze the biological consequences of the microbial alterations. We investigated the changes in the functional microbiota in the appendix of PD patients relative to controls (n = 12 PD, 16 C) by metatranscriptomic analysis. We found microbial dysbiosis affecting lipid metabolism, including an upregulation of bacteria responsible for secondary bile acid synthesis. We then quantitatively measure changes in bile acid abundance in PD relative to the controls in the appendix (n = 15 PD, 12 C) and ileum (n = 20 PD, 20 C). Bile acid analysis in the PD appendix reveals an increase in hydrophobic and secondary bile acids, deoxycholic acid (DCA) and lithocholic acid (LCA). Further proteomic and transcriptomic analysis in the appendix and ileum corroborated these findings, highlighting changes in the PD gut that are consistent with a disruption in bile acid control, including alterations in mediators of cholesterol homeostasis and lipid metabolism. Microbially derived toxic bile acids are heightened in PD, which suggests biliary abnormalities may play a role in PD pathogenesis.


Author(s):  
Suzanne Meiring ◽  
Emma CE Meessen ◽  
Annieke C.G. van Baar ◽  
Frits Holleman ◽  
Max Nieuwdorp ◽  
...  

Introduction: Duodenal Mucosal Resurfacing (DMR) is a new endoscopic ablation technique aimed at improving glycemia and metabolic control in patients with type 2 diabetes mellitus (T2DM). DMR appears to improve insulin resistance, which is the root cause of T2DM, but its mechanism of action is largely unknown. Bile acids function as intestinal signalling molecules in glucose and energy metabolism via the activation of farnesoid X receptor and secondary signalling (e.g. via fibroblast growth factor 19[FGF19]), and are linked to metabolic health. Methods: We investigated the effect of DMR and GLP-1 on postprandial bile acid responses in 16 patients with insulin-dependent T2DM, using mixed meal tests performed at baseline and six months after the DMR procedure. Results: The combination treatment allowed discontinuation of insulin treatment in 11/16 (69%) of patients while improving glycaemic and metabolic health. We found increased postprandial unconjugated bile acid responses (all p<0.05), an overall increased secondary bile acid response (p=0.036) and a higher 12α-hydroxylated:non12α-hydroxylated ratio (p<0.001). Total bile acid concentrations were unaffected by the intervention. Postprandial FGF19 and 7-alpha-hydroxy-4-cholesten-3-one (C4) concentrations decreased post-intervention (both p<0.01). Conclusion and discussion: Our study demonstrates that DMR with GLP-1 modulates the postprandial bile acid response. The alterations in postprandial bile acid responses may be the result of changes in the microbiome, ileal bile acid uptake and improved insulin sensitivity. Controlled studies are needed to elucidate the mechanism linking the combination treatment to metabolic health and bile acids.


2017 ◽  
Vol 312 (1) ◽  
pp. H21-H32 ◽  
Author(s):  
Stefano Fiorucci ◽  
Angela Zampella ◽  
Giuseppe Cirino ◽  
Mariarosaria Bucci ◽  
Eleonora Distrutti

Bile acids are end products of cholesterol metabolism generated in the liver and released in the intestine. Primary and secondary bile acids are the result of the symbiotic relation between the host and intestinal microbiota. In addition to their role in nutrient absorption, bile acids are increasingly recognized as regulatory signals that exert their function beyond the intestine by activating a network of membrane and nuclear receptors. The best characterized of these bile acid-activated receptors, GPBAR1 (also known as TGR5) and the farnesosid-X-receptor (FXR), have also been detected in the vascular system and their activation mediates the vasodilatory effects of bile acids in the systemic and splanchnic circulation. GPBAR1, is a G protein-coupled receptor, that is preferentially activated by lithocholic acid (LCA) a secondary bile acid. GPBAR1 is expressed in endothelial cells and liver sinusoidal cells (LSECs) and responds to LCA by regulating the expression of both endothelial nitric oxide synthase (eNOS) and cystathionine-γ-lyase (CSE), an enzyme involved in generation of hydrogen sulfide (H2S). Activation of CSE by GPBAR1 ligands in LSECs is due to genomic and nongenomic effects, involves protein phosphorylation, and leads to release of H2S. Despite that species-specific effects have been described, vasodilation caused by GPBAR1 ligands in the liver microcirculation and aortic rings is abrogated by inhibition of CSE but not by eNOS inhibitor. Vasodilation caused by GPBAR1 (and FXR) ligands also involves large conductance calcium-activated potassium channels likely acting downstream to H2S. The identification of GPBAR1 as a vasodilatory receptor is of relevance in the treatment of complex disorders including metabolic syndrome-associated diseases, liver steatohepatitis, and portal hypertension.


Sign in / Sign up

Export Citation Format

Share Document