Outer-sphere electron-transfer reactions of ascorbate anions

1982 ◽  
Vol 35 (6) ◽  
pp. 1133 ◽  
Author(s):  
NH Williams ◽  
JK Yandell

Rate constants for the one-electron oxidation of ascorbate dianion (A2-) by bis(terpyridine)cobalt(III)ion (8.5 × 106 dm3 mol-1 s-1) and pentaammine(pyridine)ruthenium(III) ion (6.0 × 109 dm3 mol-1 s-1), and of the monoanion (HA-) by tetraammine (bipyridine)ruthenium(III)ion (2.1 × 105 dm3 mol-1s-1) have been determined in aqueous solution at 25�C and ionic strength 0.1 (NaNO3 or NaClO4). It is shown that these rate constants, and other published rate constants for oxidation of HA- and A2-, are consistent with the Marcus cross relation, on the assumption that the self-exchange rate constants for both the HA-/HA and A2-/A-couples are 106 dm3 mol-1 s-1. One electron redox potentials for the ascorbate/dehydroascorbate system have been derived from scattered literature data.


1985 ◽  
Vol 63 (11) ◽  
pp. 2983-2989 ◽  
Author(s):  
M. G. Fairbank ◽  
A. McAuley ◽  
P. R. Norman ◽  
O. Olubuyide

The preparation of [Ni(1,4,7-triazacyciodecane)2]3+, (Ni(10-aneN3)23+) is described. The existing procedure has been modified leading to good yields of the ligand trihydrochloride. The nickel(II) analogue (reported previously) is oxidised in a facile manner, either by Co3+aq in acidic aqueous media or by NO+ in CH3CN. Since the octahedral NiN6, chromophore is retained upon electron transfer, outer sphere reactions both of the Ni(II) and Ni(III) species have been studied. Rates of oxidation by various nickel(III) macrocycles have been measured and details are provided. Electrochemical oxidation of the Ni(II) complex is consistent with E0(Ni(10-aneN3)23+/2+) = 0.997 V (vs. NHE). The data have been used in a Marcus correlation, leading to the self-exchange rate k11 for the couple (Ni(10-aneN3)23+/2+) = (2 ± 1) × 104 M−1 s−1. This value is compared with other data derived using octahedral Ni(II)/Ni(III) centres. The oxidation of the Ni(II) complex by Co(III)aq has been studied in both protonated and deuterated media. There is no evidence for any proton transfer (from the N—H) being coupled to the electron transfer step. The observed rate constant for the reaction of Co3+ with Ni(II)(10-aneN3)22+ (550 M−1 s−1) may be compared with the calculated outer sphere rate (270 M−1 s−1). An estimate of k11 (CoOH2+/+) ~ 3 M−1 s−1 for the CoOH2+/+ exchange is discussed.



1996 ◽  
Vol 74 (5) ◽  
pp. 658-665 ◽  
Author(s):  
Kefei Wang ◽  
R.B. Jordan

The rates of oxidation of CoII(dmgBF2)2(OH2)2 by CoIII(NH3)5X2+ (X = Br−, Cl−, and N3−) have been studied at 25 °C in 0.10 M LiClO4. The rate constants are 50 ± 9, 2.6 ± 0.2, and 5.9 ± 1.0 M−1 s−1 for X = Br−, Cl−, and N3−, respectively, in 0.01 M acetate buffer at pH 4.7. The relative rates are consistent with the inner-sphere bridging mechanism established earlier by Adin and Espenson for the analogous reactions of CoII(dmgH)2(OH2)2. The rate constants with CoII(dmgBF2)2(OH2)2 typically are ~103 times smaller and this is attributed largely to the smaller driving force for the CoII(dmgBF2)2(OH2)2 complex. The outer-sphere oxidations of cobalt(II) sepulchrate by CoIII(dmgH)2(OH2)2+ (pH 4.76–7.35, acetate, MES, and PIPES buffers) and CoIII(dmgBF2)2(OH2)2+ (pH 3.3–7.42, chloroacetate, acetate, MES, and PIPES buffers) have been studied. The pH dependence gives the following rate constants (M−1 s−1) for the species indicated: (1.55 ± 0.09) × 105 (CoIII(dmgBF2)2(OH2)2+); (5.5 ± 0.3) × 103 (CoII(dmgH)2(OH2)2+); (3.1 ± 0.5) × 102 (CoIII(dmgH)2(OH2)(OH)); (2.5 ± 0.3) × 102 (CoIII(dmgBF2)2(OH2)(OH)). The known reduction potentials for cobalt(III) sepulchrate and the diaqua complexes, and the self-exchange rate for cobalt(II/III) sepulchrate, are used to estimate the self-exchange rate constants for the dioximate complexes. Comparisons to other reactions with cobalt sepulchrate indicates best estimates of the self-exchange rate constants are ~2.4 × 10−2 M−1 s−1 for CoII/III(dmgH)2(OH2)2and ~5.7 × 10−3 M−1 s−1 for CoII/III(dmgBF2)2(OH2)2. Key words: electron transfer, cobaloxime, inner sphere, outer sphere, self-exchange.



1985 ◽  
Vol 63 (6) ◽  
pp. 1198-1203 ◽  
Author(s):  
A. McAuley ◽  
Lee Spencer ◽  
P. R. West

The reactions of the outer-sphere electron transfer reagent, Ni(9-aneN3)23+, (bis(1,4,7-triazacyclononane)nickel(III) ion) with ascorbic acid, hydroquinone, catechol, and resorcinol have been investigated. The absence of any proton related equilibria with the oxidant provides a means of ascribing the observed inverse hydrogen ion dependences to reactions of the dissociated ascorbate or quinolate ions, (HA−). The data are consistent with the rate-determining one-electron transfer reactions:[Formula: see text]followed by rapid oxidation of the radical ions formed. In the reaction with ascorbic acid, k1 ~ 0 and k2 (T = 25° C) = 5.2 × 106 M−1 s−1 (ΔH≠ = 10.1 ± 2.5 kcal mol−1, ΔS≠ = 5.7 ± 5.1 cal mol−1 K−1). For hydroquinone, catechol, and resorcinol, k1 = 2.9 × 103, 2.8 × 102, and ~0 M−1 s−1and k2 = 6.9 × 109, 4.1 × 109, and 2.8 × 108 M−1 s−1, respectively. These data have been combined with those from other similar reactions leading, by use of a Marcus correlation, to self-exchange rate constants for the HAsc−/HAsc• couple of 3.5 × 105 M−1 s−1 and for the H2Quin0/+ and H2cat0/+ systems of 5 × 107 and 2 × 107 M−1 s−1, respectively. The importance of the effect of bond-reorganisation on electron transfer is discussed.



1982 ◽  
Vol 47 (7) ◽  
pp. 1773-1779 ◽  
Author(s):  
T. P. Radhakrishnan ◽  
A. K. Sundaram

The paper is a detailed study of the cyclic voltammetric behaviour of Eu3+ at HMDE in molar solutions of KCl, KBr, KI, KSCN and in 0.1M-EDTA solution with an indigenously built equipment. The computed values of the rate constants at various scan rates show good agreement with those reported by other electrochemical methods. In addition, the results indicate participation of a bridged activated complex in the electron-transfer step, the rate constants showing the trend SCN- > I- > Br- > Cl- usually observed for bridging order of these anions in homogeneous electron-transfer reactions. The results for Eu-EDTA system, however, indicate involvement of an outer sphere activated complex in the electrode reaction.



Sign in / Sign up

Export Citation Format

Share Document