Phenotyping approaches to evaluate nitrogen-use efficiency related traits of diverse wheat varieties under field conditions

2016 ◽  
Vol 67 (11) ◽  
pp. 1139 ◽  
Author(s):  
Giao N. Nguyen ◽  
Joe Panozzo ◽  
German Spangenberg ◽  
Surya Kant

Nitrogen (N) is a key mineral element required for crop growth, yield and quality. Nitrogen-use efficiency (NUE) in crop plants is low despite significant research efforts. Excessive use of N fertiliser results in significant economic cost and contributes to environmental pollution. Therefore, it is crucial to develop crop varieties with improved NUE, and this requires efficient phenotyping approaches to screen genotypes under defined N conditions. To address this, 15 wheat (Triticum aestivum L.) varieties, grown under three N levels, were phenotyped for NUE-related traits under field conditions. Significant genotypic differences were observed in varieties having low to high responsiveness to N applications. The results suggest that basal low N can be used to screen wheat varieties that are less responsive to N, whereas N supply from 80 to 160 kg N ha–1 could be used to screen high N-responsive varieties. Normalised difference vegetation index (NDVI) measured by using Crop Circle, and SPAD units measured by SPAD meter at heading stage, were well correlated with shoot dry biomass, grain yield, and shoot and grain N concentration, and could potentially be used as tools to phenotype different wheat varieties under varying N treatments. The data also demonstrated that NDVI and SPAD could be used to differentiate wheat varieties phenotypically for NUE-related traits. The prospect of utilising efficient, non-destructive phenotyping to study NUE in crops is also discussed.

2020 ◽  
Vol 11 ◽  
Author(s):  
Dennis Beesigamukama ◽  
Benson Mochoge ◽  
Nicholas K. Korir ◽  
Komi K. M. Fiaboe ◽  
Dorothy Nakimbugwe ◽  
...  

2020 ◽  
Vol 51 (4) ◽  
pp. 1139-1148
Author(s):  
Othman & et al.

The research work was conducted in Izra’a Research station, which affiliated to the General Commission for Scientific Agricultural Research (GCSAR), during the growing seasons (2016 – 2017; 2017 – 2018), in order to evaluate the response of two durum wheat verities (Douma3 and Cham5) and two bread wheat varieties (Douma4 and Cham6) to Conservation Agriculture (CA) as a full package compared with Conventional Tillage system (CT) under rainfed condition using lentils (Variety Edleb3) in the applied crop rotation. The experiment was laid according to split-split RCBD with three replications. The average of biological yield, grain yield,  rainwater use efficiency and nitrogen use efficiency was significantly higher during the first growing season, under conservation agriculture in the presence of crop rotation, in the variety Douma3 (7466 kg. ha-1, and 4162kg. ha-1, 19.006 kg ha-1 mm-1,  39.62 kg N m-2respectively). The two varieties Douma3 and Cham6 are considered more responsive to conservation agriculture system in the southern region of Syria, because they recorded the highest grain yields (2561, 2385 kg ha-1 respectively) compared with the other studied varieties (Cham5 and Douma4) (1951 and 1724 kg ha-1 respectively). They also exhibited the highest values of both rainwater and nitrogen use efficiency.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1513 ◽  
Author(s):  
Mousumi Mondal ◽  
Milan Skalicky ◽  
Sourav Garai ◽  
Akbar Hossain ◽  
Sukamal Sarkar ◽  
...  

Peanut (Arachis hypogaea L.) is adorned as the one of the important sources of vegetable oil, protein, vitamins and several minerals, which could mitigate the nutritional gap worldwide. However, peanut cultivation in winter suffers from low temperature stress and knowledge lacuna regarding the optimum dose nitrogen. Therefore, the present investigations were carried out during the winter seasons 2015–2016 and 2016–2017 at the district seed farm of Bidhan Chandra Krishi Viswavidyalaya, an agricultural university in West Bengal, India (23°26’ N, 88°22´ E, elevation 12 m above mean sea level) to facilitate the comprehensive study of plant growth, productivity and profitability of an irrigated peanut crop under varied levels of nitrogen: with and without a rhizobium inoculants and with and without polythene mulch. Quality traits and nutrient dynamics were also itemized. Fertilizing with 100% of the recommended dose of nitrogen combined with rhizobium inoculant and polythene mulch significantly enhanced peanut plant growth, yield and yield-attributing traits, while resulting in the maximum fertilizer (i.e., nitrogen, phosphorus and potassium) uptake by different plant parts. The greatest number of root nodules occurred in the treatment that received 75% of the recommended dose of nitrogen with rhizobium supplementation under polythene mulch, while 50% of the recommended dose of nitrogen with no rhizobium resulted in maximum fertilizer nitrogen use efficiency. Applying the full recommended dose of nitrogen with the rhizobium inoculants and mulch resulted in maximum profitability in the peanut crop.


2016 ◽  
Vol 186 ◽  
pp. 18-31 ◽  
Author(s):  
Sharif Ahmed ◽  
Elizabeth Humphreys ◽  
Muhammad Salim ◽  
Bhagirath S. Chauhan

2007 ◽  
Vol 35 (2) ◽  
pp. 213-216 ◽  
Author(s):  
Marijana Baric ◽  
Hrvoje Sarcevic ◽  
Snjezana Keresa ◽  
Ivanka Habus Jercic ◽  
Ivana Rukavina

2020 ◽  
Vol 12 (21) ◽  
pp. 8780
Author(s):  
Muhammad Muhaymin Mohd Zuki ◽  
Noraini Md. Jaafar ◽  
Siti Zaharah Sakimin ◽  
Mohd Khanif Yusop

Nitrogen (N) fertilizer is commonly used to supply sufficient N for plant uptake, for which urea is one of the highly preferred synthetic N fertilizers due to its high N content. Unfortunately, N provided by urea is rapidly lost upon urea application to soils through ammonia volatilization, leaching, and denitrification. Thus, treatment of urea with urease inhibitor (N-(n-Butyl) Thiophosphoric Triamide (NBPT)) is among the solutions to slow down urea hydrolysis, therefore reducing loss of NH3 and saving N available for plant uptake and growth. A field study was carried out to evaluate the effects of NBPT-coated urea (NCU) at varying rates on growth, yield, and nitrogen use efficiency (NUE) of maize in tropical soil. The experiment was conducted at Field 15, Universiti Putra Malaysia, Serdang, Selangor, Malaysia, and maize (Zea mays var. Thai Super Sweet) was used as the test crop. The results showed that all maize grown in soils applied with urea coated with NBPT (NCU) (T2, T3, T4, and T5) had significantly (P ≤ 0.05) higher chlorophyll content compared to the control (T0 and T1). The surface leaf area of maize grown in NCU-treated soils at 120 kg N h−1 (T3) was recorded as the highest. NCU at and 96 kg N ha−1 (T3 and T4) were relatively effective in increasing maize plant dry weight, yield, and N uptake. Improvement of NUE by 45% over urea was recorded in the treatment of NCU at 96 kg N ha−1. NBPT-coated urea (NCU) at 96 kg N ha−1 had potential to increase the growth, yield, nitrogen uptake, and NUE of maize by increasing the availability of N for plant growth and development.


Pedosphere ◽  
2009 ◽  
Vol 19 (6) ◽  
pp. 681-691 ◽  
Author(s):  
Ya-Li ZHANG ◽  
Jian-Bo FAN ◽  
Dong-Sheng WANG ◽  
Qi-Rong SHEN

2009 ◽  
Vol 55 (No. 7) ◽  
pp. 273-280 ◽  
Author(s):  
Jing Li ◽  
Shi-Qing Li ◽  
Yi Liu ◽  
Xiao-Li Chen

The effects of elevated atmospheric NH<sub>3</sub> on growth and yield parameters of two winter wheat varieties, the high water and fertilizer-demanding variety Xiaoyan 6 (XY6) and the drought-resistant variety Changhan 58 (CH58), grown with two levels of N fertilization, were studied in Open-Top Chambers. The results showed that in combination with the high N treatment increasing the atmospheric NH<sub>3</sub> concentration to 1000 nl/l from the ambient level of 10 nl/l NH<sub>3</sub> significantly (<I>P</I> < 0.05) reduced the biomass and the root/shoot ratios of the plants, especially in XY6 plants, mainly because it negatively influenced root biomass production at anthesis and mature stages. In addition, the grain yield of XY6 was by 1.51% higher, while that of CH58 was 13.2% lower, following exposure to the elevated atmospheric NH<sub>3</sub> concentration rather than the ambient concentration in combination with the high N treatment. In contrast, in combination with the low N treatment, elevated atmospheric NH<sub>3</sub> had significantly and non-significantly positive effects on the grain yield of XY6 and CH58 plants, respectively. The Nitrogen Use Efficiency (NUE) and related parameters were all lower in plants of both varieties exposed to the high atmospheric NH3 concentration together with either the high or low N treatment.


Sign in / Sign up

Export Citation Format

Share Document