Persistence and leaching of imazethapyr and flumetsulam herbicides over a 4-year period in the highly alkaline soils of south-eastern Australia

2006 ◽  
Vol 46 (5) ◽  
pp. 669 ◽  
Author(s):  
K. L. Hollaway ◽  
R. S. Kookana ◽  
D. M. Noy ◽  
J. G. Smith ◽  
N. Wilhelm

Imazethapyr and flumetsulam are acetolactate synthase herbicides commonly used in the cereal belt of south-eastern Australia. As their labels recommend recropping periods of up to 34 months for imazethapyr and 24 months for flumetsulam, there are concerns that in some cases their persistence may damage subsequent rotation crops. This is the first major study in south-eastern Australia to investigate their leaching and persistence for up to 4 years after treatment. Imazethapyr persisted for more than 3 years at 2 sites and flumetsulam for more than 2 years at 3 sites. For imazethapyr, soil type (clay content) rather than soil pH seemed to be most important in determining persistence, with residues of 10% of applied imazethapyr predicted to persist for 24 months after treatment in clay soil and 5 months after treatment in sandy soil. The potential for leaching below our studied soil depth of 40 cm is of concern for imazethapyr but not for flumetsulam. The current labels appear to provide adequate information for safe recropping periods, but may be conservative for imazethapyr in sandy soils.

2006 ◽  
Vol 46 (10) ◽  
pp. 1323 ◽  
Author(s):  
K. L. Hollaway ◽  
R. S. Kookana ◽  
D. M. Noy ◽  
J. G. Smith ◽  
N. Wilhelm

Grain growers in south-eastern Australia have reported unexpected crop failures with theoretically safe recropping periods for acetolactate synthase herbicides in alkaline soils. This experience has led to the concern that these herbicides may degrade very slowly in alkaline soils, and herbicide residues have at times been blamed for unexplained crop losses. To address this issue, we established 5 recropping trials across Victoria and South Australia with 5 acetolactate synthase herbicides (chlorsulfuron, triasulfuron, metsulfuron-methyl, imazethapyr, and flumetsulam). The herbicides were applied to separate plots in years 1, 2 or 3, and sensitive crop species were sown in year 4 to measure the impact of herbicide residues. We observed that the persistence of the sulfonylureas (chlorsulfuron, triasulfuron, metsulfuron-methyl) varied between herbicides, but all persisted longer in alkaline soils than in acid soils, and were, therefore, more likely to damage crops in alkaline soil. Imazethapyr persisted longer in clay soils than in sandy soils and was, therefore, more likely to damage crops in clay soils. All herbicides persisted longer when rainfall was below average. Canola was more sensitive to imazethapyr than either pea, lentil or medic, but was less sensitive to the sulfonylureas. In contrast, lentil and medic were the most sensitive to sulfonylureas. Despite some damage, we found that safe recropping periods could be predicted from the product labels in all but one situation. The sole exception was that metsulfuron-methyl reduced dry matter and yield of lentil and medic sown 10 months after application in a soil with pH 8.5. We hypothesise that the real cause of crop failure in many situations is not unusual herbicide persistence, but failure to take full account of soil type (pH and clay content including variation in the paddock) and rainfall when deciding to recrop after using acetolactate synthase herbicides.


1999 ◽  
Vol 50 (7) ◽  
pp. 1233 ◽  
Author(s):  
G. H. Baker ◽  
P. J. Carter ◽  
V. J. Barrett

The earthworm fauna of pastures in south-eastern Australia is dominated by exotic lumbricid earthworms, in particular the endogeic species, Aporrectodea caliginosa and A. trapezoides. Anecic species such as A. longa are very rare. All 3 species were introduced within cages in 10 pastures on a range of soil types within the region. Five months later, A. longa had generally survived the best and A. trapezoides the worst. The survivals and weights of individual worms varied between sites for all 3 species. The survivals of A. caliginosa and A. longa, and to a lesser extent A. trapezoides, were positively correlated with soil clay content. The weights of A. caliginosa and A. longa, but not A. trapezoides, were positively correlated with soil P content. The survivals and weights of A. longa and A. trapezoides and the weights only of A. caliginosa decreased with increasing inoculation density, suggesting increased intraspecific competition for resources, particularly in the first two species. A. longa reduced the abundance and biomass of the exotic acanthodrilid earthworm, Microscolex dubius, at one site, and the total biomass of 3 native megascolecid species at another, when these latter species occurred as contaminants in A. longa cages. The addition of lime had no effect on the survivals and weights of A. caliginosa, A. longa, and A. trapezoides, although the soils were acid at the sites tested. The addition of sheep dung increased the survival and weights of some species at some sites. Mechanical disturbance of the soil within cages reduced the survivals of A. longa and A. trapezoides. A. longa was released without being caged at 25 sites within one pasture in South Australia. Four years later, it was recovered at all release points. A. longa has the potential to colonise pastures widely throughout the higher rainfall regions of south-eastern Australia.


2006 ◽  
Vol 46 (8) ◽  
pp. 1069 ◽  
Author(s):  
K. L. Hollaway ◽  
R. S. Kookana ◽  
D. M. Noy ◽  
J. G. Smith ◽  
N. Wilhelm

The sulfonylurea herbicides are commonly used in the cereal belt of south-eastern Australia and there is concern that their persistence in alkaline soils is long enough to damage subsequent rotational crops such as legumes and oilseeds. In this study, we investigated leaching and persistence of 3 commonly used herbicides (chlorsulfuron, triasulfuron and metsulfuron-methyl) in alkaline soils of south-eastern Australia (pH range 7.4–8.6) for at least 4 years after treatment. In general, chlorsulfuron was predicted to persist for 3–5 years [time to degrade to 1% (DT99) of 33–63 months after treatment depending on the field site], triasulfuron for 1–3 years (DT99 of 13–37 months after treatment), and metsulfuron-methyl for less than 1 year (although data were insufficient for degradation estimates) after its application. However, this varied between sites and years of application. Although, the majority of residues remained in the top 20 cm of the soil profile throughout the study, leaching of a small fraction of the residue to deeper layers of the profiles (up to 1 m) was observed. Despite their slow rate of degradation, the herbicides did eventually dissipate, even in soils with very high pH (8.5). In most cases, the current product labels provide an adequate safety period to protect sensitive rotational crops from potential damage due to excessive persistence. However, in particular years at 3 of the 5 field sites, metsulfuron-methyl and triasulfuron persisted beyond the recommended recropping period (9 months for metsulfuron-methyl and 22 months for triasulfuron in soils up to pH 7.5 or 24 months in soils pH 7.6 and above). An accurate measurement of soil pH and its variability within the paddock is essential to minimise any subsequent crop damage by these herbicides.


1956 ◽  
Vol 7 (6) ◽  
pp. 536 ◽  
Author(s):  
BE Butler ◽  
JT Hutton

This study of Widgelli parna, aeolian material derived from soils during a previous arid period, shows that there is a relationship between particle size and the distance leeward from the dune zones. Within 1 or 2 miles of the dunes the modal size of the non-clay fraction is 150 to 200 µ, and this value changes to 40 µ at a distance of 150 miles leeward. The clay content varies inversely, being about 36 per cent. near the dunes and 70 per cent. 150 miles leeward. The non-clay fraction is highly graded. Within the dune zones, and particularly in the dune itself, the parna is mixed with coarser sand. The size and clay-content relationships for the parna sheet also hold in the dune zones with the modal size at the crest about 400 µ. The landscapes and soils to be related to the parna include the riverine plains, the adjoining hills, and the dune landscape of the Mallee. Highly differentiated soils occur on the parna layer, and these include brown solonized soils in the dune zones, red-brown earths on the hills, and red-brown earths and grey and brown soils of heavy texture on the riverine plains. Soil differentiation is largely caused by drainage differences.


2007 ◽  
Vol 47 (11) ◽  
pp. 1245 ◽  
Author(s):  
D. Adcock ◽  
A. M. McNeill ◽  
G. K. McDonald ◽  
R. D. Armstrong

Crop yield variability and productivity below potential yield on neutral and alkaline soils in the semiarid Mediterranean-type environments of south-eastern Australia have been attributed, in part, to variable rooting depth and incomplete soil water extraction caused by physical and chemical characteristics of soil horizons below the surface. In this review these characteristics are referred to as subsoil constraints. This document reviews current information concerning subsoil constraints typical of neutral and alkaline soils in south-eastern Australia, principally salinity, sodicity, dense soils with high penetration resistance, waterlogging, nutrient deficiencies and ion toxicities. The review focuses on information from Australia (published and unpublished), using overseas data only where no suitable Australian data is available. An assessment of the effectiveness of current management options to address subsoil constraints is provided. These options are broadly grouped into three categories: (i) amelioration strategies, such as deep ripping, gypsum application or the use of polyacrylamides to reduce sodicity and/or bulk density, deep placement of nutrients or organic matter to overcome subsoil nutrient deficiencies or the growing of ‘primer’ crops to naturally ameliorate the soil; (ii) breeding initiatives for increased crop tolerance to toxicities such as salt and boron; and (iii) avoidance through appropriate agronomic or agro-engineering solutions. The review highlights difficulties associated with identifying the impact of any single subsoil constraint to crop production on neutral and alkaline soils in south-eastern Australia, given that multiple constraints may be present. Difficulty in clearly ranking the relative effect of particular subsoil constraints on crop production (either between constraints or in relation to other edaphic and biological factors) limits current ability to develop targeted solutions designed to overcome these constraints. Furthermore, it is recognised that the task is complicated by spatial and temporal variability of soil physicochemical properties and nutrient availability, as well as other factors such as disease and drought stress. Nevertheless, knowledge of the relative importance of particular subsoil constraints to crop production, and an assessment of impact on crop productivity, are deemed critical to the development of potential management solutions for these neutral to alkaline soils.


Sign in / Sign up

Export Citation Format

Share Document