Izmir subterranean clover (Trifolium subterraneum L. var. subterraneum)

2007 ◽  
Vol 47 (2) ◽  
pp. 226 ◽  
Author(s):  
P. G. H. Nichols ◽  
G. A. Sandral ◽  
B. S. Dear ◽  
C. T. de Koning ◽  
D. L. Lloyd ◽  
...  

Izmir is a hardseeded, early flowering, subterranean clover of var. subterraneum (Katz. et Morley) Zohary and Heller collected from Turkey and developed by the collaborating organisations of the National Annual Pasture Legume Improvement Program. It is a more hardseeded replacement for Nungarin and best suited to well-drained, moderately acidic soils in areas with a growing season of less than 4.5 months. Izmir seed production and regeneration densities in 3-year pasture phases were similar to Nungarin in 21 trials across southern Australia, but markedly greater in years following a crop or no seed set. Over all measurements, Izmir produced 10% more winter herbage and 7% more spring herbage than Nungarin. Its greater hardseededness and good seed production, makes it better suited to cropping rotations than Nungarin. Softening of Izmir hard seeds occurs later in the summer–autumn period than Nungarin, giving it slightly greater protection from seed losses following false breaks to the season. Izmir is recommended for sowing in Western Australia, New South Wales, Victoria, South Australia and Queensland. Izmir has been granted Plant Breeders Rights in Australia.

2006 ◽  
Vol 46 (8) ◽  
pp. 1105 ◽  
Author(s):  
P. G. H. Nichols ◽  
M. J. Barbetti ◽  
G. A. Sandral ◽  
B. S. Dear ◽  
C. T. de Koning ◽  
...  

Urana is a hardseeded, moderately early flowering F5-derived crossbred subterranean clover of var. subterraneum [(Katz. et Morley) Zohary and Heller] developed by the collaborating organisations of the National Annual Pasture Legume Improvement Program. It has been selected for release as a new cultivar on the basis of its high winter and spring herbage production and overall field performance relative to other subterranean clovers of similar maturity. Urana is recommended for sowing in Western Australia, New South Wales, Victoria, South Australia and Queensland. It is best suited to well-drained, moderately acidic soils in areas with a growing season of 5–7 months, which extends into mid-October. Urana is suited to phase farming and crop rotations. It has been granted Plant Breeders Rights in Australia.


2007 ◽  
Vol 47 (2) ◽  
pp. 223 ◽  
Author(s):  
P. G. H. Nichols ◽  
M. J. Barbetti ◽  
G. A. Sandral ◽  
B. S. Dear ◽  
C. T. de Koning ◽  
...  

Coolamon is a mid-season to late-season flowering F4-derived crossbred subterranean clover of var. subterraneum, developed by the collaborating organisations of the National Annual Pasture Legume Improvement Program. It is a replacement for Junee and has been selected for release on the basis of its greater herbage production and persistence, and its resistance to both known races of clover scorch. Coolamon is recommended for sowing in Western Australia, New South Wales, Victoria, South Australia and Queensland. It is best suited to well-drained, moderately acidic soils in areas with a growing season of 6.5–8 months that extends into November. Coolamon is best suited to phase farming and permanent pasture systems. It can also be used in cropping rotations, but at least 2 years of pasture are required between crops. Coolamon has been granted Plant Breeders Rights in Australia.


2001 ◽  
Vol 41 (2) ◽  
pp. 187 ◽  
Author(s):  
R. Aldaoud ◽  
W. Guppy ◽  
L. Callinan ◽  
S. F. Flett ◽  
K. A. Wratten ◽  
...  

In 1995–96, a survey of soil samples from subterranean clover (Trifolium subterraneum L.) paddocks was conducted across Victoria, South Australia, New South Wales and Western Australia, to determine the distribution and the prevalence of races of Phytophthora clandestina (as determined by the development of root rot on differential cultivars), and the association of its occurrence with paddock variables. In all states, there was a weak but significant association between P. clandestina detected in soil samples and subsequent root rot susceptibility of differential cultivars grown in these soil samples. Phytophthora clandestina was found in 38% of the sampled sites, with a significantly lower prevalence in South Australia (27%). There were significant positive associations between P. clandestina detection and increased soil salinity (Western Australia), early growth stages of subterranean clover (Victoria), mature subterranean clover (South Australia), recently sown subterranean clover (South Australia), paddocks with higher subterranean clover content (Victoria), where herbicides were not applied (South Australia), irrigation (New South Wales and Victoria), cattle grazing (South Australia and Victoria), early sampling dates (Victoria and New South Wales), sampling shortly after the autumn break or first irrigation (Victoria), shorter soil storage time (Victoria) and farmer’s perception of root rot being present (Victoria and New South Wales). Only 29% of P. clandestina isolates could be classified under the 5 known races. Some of the unknown races were virulent on cv. Seaton Park LF (most resistant) and others were avirulent on cv. Woogenellup (most susceptible). Race 1 was significantly less prevalent in South Australia than Victoria and race 0 was significantly less prevalent in New South Wales than in South Australia and Western Australia. This study revealed extremely wide variation in the virulence of P. clandestina. The potential importance of the results on programs to breed for resistance to root rot are discussed. in South Australia.


2006 ◽  
Vol 46 (8) ◽  
pp. 1109 ◽  
Author(s):  
P. G. H. Nichols ◽  
M. J. Barbetti ◽  
P. M. Evans ◽  
A. D. Craig ◽  
G. A. Sandral ◽  
...  

Napier is a late flowering F6-derived crossbred subterranean clover of var. yanninicum [(Katz. et Morley) Zohary and Heller] developed by the collaborating organisations of the National Annual Pasture Legume Improvement Program. It is a replacement for both Larisa and Meteora and has been selected for release on the basis of its greater herbage and seed production and disease resistance to both known races of clover scorch and 2 of the common races of Phytophthora root rot. Napier is recommended for sowing in Victoria, Western Australia, New South Wales, and South Australia. It is best suited to moderately acidic soils prone to water-logging and to loamy and clay soils with good water-holding capacity in areas with a minimum growing season length of 7.5 months, which extends into late November. Napier is well adapted to the permanent pasture systems found in the areas in which it will be grown. Its upright, vigorous growth makes it well suited to grazing by cattle or sheep and to fodder conservation. Napier has been granted Plant Breeders Rights in Australia.


1987 ◽  
Vol 27 (4) ◽  
pp. 551 ◽  
Author(s):  
SG Clark ◽  
JR Hirth

Forty-two midseason-late maturing subterranean clover genotypes from the Mediterranean basin, 12 commercial cultivars, 2 bulk treatments and a blank control were sown in small plots in 1983 at the Pastoral Research Institute, Hamilton, Vic. (10.5 m2), and at the Rutherglen Research Institute, Rutherglen, Vic. (7.0 m2), to assess seasonal yield and persistence over 3 years. Perennial ryegrass cv. Ellett was sown as a companion grass at Hamilton. At both sites, but particularly at Hamilton, several genotypes were identified which showed considerable improvement over commercial cultivars. Some genotypes, although late maturing, were as productive as the best commercial cultivars in autumn and winter (e.g 2.06-2.38 t DM/ha) and were also highly productive (e.g. 3.46-3.94 t DM/ha) in spring (e.g. CPI 89822 H, 89774 F [Sardinia], 68103 H [Portugal] and GF 073.2 [Corsica] at Hamilton and CPI 89880 F, 89855 G, 89880 J [Sardinia] and GF 144.3 [France] at Rutherglen). Seed production of some genotypes was superior to that of the commercial cultivars (P= 0.01). Trikkala, Larisa and Karridale were the cultivars with the largest seed banks at both sites at the end of the third year. Nine of the 13 genotypes measured had seed banks at least as large as Trikkala (36 1 kg/ha) at Hamilton (e.g. 89774 F, 431 kg/ha; 89777 C, 402 kg/ha). All 10 genotypes measured at Rutherglen had seed banks at least as large as Karridale (1298 kg/ha) (e.g. 89880 J, 1717 kg/ ha; and 89820 D, 1578 kg/ha). As a result of this work and similar studies in Western Australia, New South Wales, South Australia and Tasmania, 13 late-maturing genotypes have been chosen for advanced evaluation prior to cultivar release about 1990.


1993 ◽  
Vol 44 (8) ◽  
pp. 1883 ◽  
Author(s):  
LB Hulse ◽  
K Helms ◽  
PM Waterhouse

Equipment for large scale enzyme-linked immunosorbent assay (ELISA) was developed for a 3 year nationwide survey of the incidence of four viruses in pastures of Trifolium subterraneum (subterranean clover) in New South Wales, Victoria, South Australia, Western Australia and Tasmania. Instruments were designed to (a) automate quantitatively the addition of buffer to plant samples passing through a sap extractor, (b) standardize the washing of plates in the various stages of the ELISA protocol, and (c) replace hand pipetting with a pneumatic foot-operated pipette.


2021 ◽  
Vol 72 (3) ◽  
pp. 223
Author(s):  
Wesley M. Moss ◽  
Andrew L. Guzzomi ◽  
Kevin J. Foster ◽  
Megan H. Ryan ◽  
Phillip G. H. Nichols

Subterranean clover (Trifolium subterraneum L.) is Australia’s most widely sown annual pasture legume. Its widespread use as a pasture plant requires a well-functioning seed production industry, and Australia is the only significant producer of subterranean clover seed globally. However, the sustainability of this industry is under threat due to its reliance on ageing harvest equipment and the resultant environmental impacts. In order to evaluate seed harvesting practices, technology, and issues, we report on case studies, workshops, and a survey of seed producers across southern Australia. The Horwood Bagshaw Clover Harvester, designed in the 1950s, remains the most popular subterranean clover seed harvester. We discuss its use and modifications, and document several contemporary issues facing the seed production industry. Issues are primarily soil erosion and degradation; the expensive, slow and labour-intensive harvest process; and poor reliability and maintainability of harvesters that are now at least 30 years old. We conclude the root cause of these issues is the suction harvest technology utilised by the Horwood Bagshaw Clover Harvester. Analysis of the current harvest system is provided to support the development of new approaches to harvest subterranean clover seeds.


1974 ◽  
Vol 14 (71) ◽  
pp. 749 ◽  
Author(s):  
PG Ozanne ◽  
KMW Howes

The effects of four common fertilizers containing calcium on seed production in subterranean clover (Trifolium subterraneum) were measured at six locations over five years in a total of fifteen field experiments. Calcium as a sulphate, carbonate or phosphate salt was applied to subterranean clover pastures either at the start of the growing season (autumn) or at flowering (spring). Gypsum, plaster of Paris, or lime gave large increases in seed yield per unit area and also per unit weight of tops. Spring applications of superphosphate increased seed yields in only two out of four experiments. Gypsum applied in spring at 200-500 kg ha-1 was as effective as 2,000 kg ha-1 of lime applied in autumn. Applications of lime in spring were much less effective. Increased seed yields were due to increases in burr yield, seed number per burr, and mean weight per seed. They were usually accompanied by increases in calcium concentration in the seed. Responses in seed production to calcium applications were obtained in all three sub-species of Trifolium subterraneum. In two experiments, newly sown on a soil type on which subterranean clover regeneration and persistence is commonly very poor, applied calcium doubled or quadrupled seed set. In 13 experiments using soils on which subterranean clover had persisted as the major component of the pasture for several years, calcium in the year of application increased the total seed bank by 6 to 31 per cent, and the current seed set by a greater amount.


1975 ◽  
Vol 26 (4) ◽  
pp. 647 ◽  
Author(s):  
K Helms

Seedlings of six cultivars of Trifolium subterraneum were tested during germination for resistance to Kabatiella caulivora, and gave results comparable with those obtained with seedlings inoculated by spraying at 1–4 weeks after sowing. Advantages of the method were that a large number of seedlings could be screened under uniform conditions with the minimum of time and space. Within the more susceptible group of cultivars, Woogenellup and Bacchus Marsh were usually more susceptible than Yarloop and Mt. Barker; these in turn were more susceptible than Clare, and Clare more susceptible than Daliak. For all cultivars except the highly resistant cultivar, Daliak, there was a correlation between the rate of trifoliolate leaf production and susceptibility to the disease, the most susceptible being those with most leaves expanded at the time of inoculation and with most leaves present at the time of harvest. Physiologic specialization in isolates of the pathogen from different parts of Australia was demonstrated. In general, one isolate from South Australia was more pathogenic than a group of isolates from South Australia, Victoria and Western Australia; these in turn were more pathogenic than one isolate from New South Wales, which was somewhat atypical in culture, and one from Victoria which was markedly atypical in culture.


1954 ◽  
Vol 5 (4) ◽  
pp. 664 ◽  
Author(s):  
CM Donald ◽  
CH Williams

A survey was made of the influence of the use of superphosphate and subterranean clover (Trifolium subterraneum L.) on podzolic soils formed on granodiorite in the Crookwell district of New South Wales (average rainfall, 32.7 in. per annum). Forty-four paddocks were sampled; they varied from untreated native pasture to paddocks which had been for 26 years continuously under clover and which had received a total of 13 cwt of superphosphate per acre. In all instances there had been no cultivation during treatment, and the land use mas uniformly one of sheep raising, principally for wool but with some emphasis on fat lamb production on highly improved pastures. Criteria used in this study were the changes in yield and botanical composition of the pasture, changes or trends in the chemical composition of the 0-4 in. depth of soil, and the yield of oats produced by each of the soils in pot culture with varying superimposed applications of phosphorus, sulphur, and nitrogen. The native pasture species disappear under the competition by subterranean clover, which gives a fourfold increase in the yield of pasture. Within the limits of experimental error, the phosphorus and sulphur applied as superphosphate, even that applied many years previously, can be accounted for in the surface 4 in. of soil. Losses by removal in wool and carcases are small. The added phosphorus is present in approximately equal amounts as organic phosphorus and readily extractable inorganic phosphorus. The applied sulphur appears to become a part of the organic complex. Eighty-five pounds of nitrogen has been added in the surface 4 in. of soil by rhizobial activity for each hundredweight of superphosphate applied per acre. Initially the most acute deficiencies affecting plant growth on these soils are those of phosphorus and nitrogen, with a less pronounced deficiency of sulphur. After a period of several years of superphosphate and clover, each of these deficiencies is much reduced, the order of the intensity of deficiencies then being nitrogen, sulphur, and phosphorus. Soil pH falls with superphosphate application at the rate of about 0.06 units per hundredweight of fertilizer per acre, but may reach an equilibrium value at about 5.1. This could be due to the increase in exchange capacity of the soil as a result of the increase in organic matter. A field experiment on two sites also indicated the increase in fertility under subterranean clover pasture and demonstrated the capacity of the improved soils to produce a satisfactory field crop of oats.


Sign in / Sign up

Export Citation Format

Share Document