scholarly journals The Antarctic ozone hole during 2017

2019 ◽  
Vol 69 (1) ◽  
pp. 29
Author(s):  
Andrew R. Klekociuk ◽  
Matthew B. Tully ◽  
Paul B. Krummel ◽  
Oleksandr Evtushevsky ◽  
Volodymyr Kravchenko ◽  
...  

We review the 2017 Antarctic ozone hole, making use of various meteorological reanalyses, and in-situ, satellite and ground-based measurements of ozone and related trace gases, and ground-based measurements of ultraviolet radiation. The 2017 ozone hole was associated with relatively high-ozone concentrations over the Antarctic region compared to other years, and our analysis ranked it in the smallest 25% of observed ozone holes in terms of size. The severity of stratospheric ozone loss was comparable with that which occurred in 2002 (when the stratospheric vortex exhibited an unprecedented major warming) and most years prior to 1989 (which were early in the development of the ozone hole). Disturbances to the polar vortex in August and September that were associated with intervals of anomalous planetary wave activity resulted in significant erosion of the polar vortex and the mitigation of the overall level of ozone depletion. The enhanced wave activity was favoured by below-average westerly winds at high southern latitudes during winter, and the prevailing easterly phase of the quasi-biennial oscillation (QBO). Using proxy information on the chemical make-up of the polar vortex based on the analysis of nitrous oxide and the likely influence of the QBO, we suggest that the concentration of inorganic chlorine, which plays a key role in ozone loss, was likely similar to that in 2014 and 2016, when the ozone hole was larger than that in 2017. Finally, we found that the overall severity of Antarctic ozone loss in 2017 was largely dictated by the timing of the disturbances to the polar vortex rather than interannual variability in the level of inorganic chlorine.

2019 ◽  
Vol 69 (1) ◽  
pp. 1
Author(s):  
Paul B. Krummel ◽  
Andrew R. Klekociuk ◽  
Matthew B. Tully ◽  
H. Peter Gies ◽  
Simon P. Alexander ◽  
...  

We review the 2014 Antarctic ozone hole, making use of a variety of ground-based and space-based measurements of ozone and ultra-violet radiation, supplemented by meteorological reanalyses. Although the polar vortex was relatively stable in 2014 and persisted some weeks longer into November than was the case in 2012 or 2013, the vortex temperature was close to the long-term mean in September and October with modest warming events occurring in both months, preventing severe depletion from taking place. Of the seven metrics reported here, all were close to their respective median values of the 1979–2014 record, being ranked between 16th and 21st of the 35 years for which adequate satellite observations exist.


1992 ◽  
Vol 338 (1285) ◽  
pp. 219-226 ◽  

Although stratospheric ozone loss had been predicted for m any years, the discovery of the Antarctic ozone hole was a surprise which necessitated a major rethink in theories of stratospheric chemistry. The new ideas advanced are discussed here. Global ozone loss has now also been reported after careful analysis of satellite and groundbased data sets. The possible causes of this loss are considered. Further advances require a careful coordination of field measurements and large-scale numerical modelling.


2005 ◽  
Vol 32 (20) ◽  
Author(s):  
Karl Hoppel ◽  
Gerald Nedoluha ◽  
Michael Fromm ◽  
Douglas Allen ◽  
Richard Bevilacqua ◽  
...  

2017 ◽  
Author(s):  
Sweta Shah ◽  
Olaf Tuinder ◽  
Jacob van Peet ◽  
Adrianus de Laat ◽  
Piet Stammes

Abstract. The depletion of the Antarctic ozone layer and its changing vertical distribution has been monitored closely by satellites in the past decades ever since the Antarctic ozone hole was discovered in the 1980's. Ozone profile retrieval from nadir-viewing satellites operating in the ultraviolet-visible range requires accurate calibration of level-1 (L1) radiance data. Here we study the effects of calibration on the derived level-2 (L2) ozone profiles and apply the retrieval to the Antarctic ozone hole region. We retrieve nadir ozone profiles from the SCIAMACHY instrument that flew on-board Envisat using the Ozone ProfilE Retrieval Algorithm) (OPERA) developed at KNMI with a focus on the stratospheric ozone. We study and assess the quality of these profiles and compare retrieved (L2) products from L1 SCIAMACHY versions 7 and 8 indicated as respectively (v7, v8) data from the years 2003–2011 without further radiometric correction. From validation of the profiles against ozone sonde measurements, we find that the v8 performs better due to correction for the scan-angle dependency of the instrument's optical degradation. The instrument spectral response function can still be improved for the L1 v8 data with a shift and squeeze. We find that the contribution from this improvement is a few percent residue reduction compared to a reference in the solar irradiance spectra. Validation for the years 2003 and 2009 with ozone sondes shows deviations of SCIAMACHY ozone profiles of 0.8 %–15 % in the stratosphere and 2.5 %–100 % in the troposphere, depending on the latitude and the L1 version used. Using L1 v8 for the years 2003–2011 leads to deviations of ~ 1 %–11 % in stratospheric ozone and ~ 1 %–45 % in tropospheric ozone. Application of SCIAMACHY v8 data on the Antarctic ozone hole shows that most ozone is depleted in the latitude range from 70° S to 90° S. The minimum integrated ozone column consistently occurs around 15 September for the years 2003–2011. Furthermore from the ozone profiles for all these years we observe that the value of ozone column per layer reduces to almost zero at a pressure of 100 hPa in the latitude range of 70° S to 90° S, as was found from other observations.


1988 ◽  
Vol 15 (2) ◽  
pp. 101-115 ◽  
Author(s):  
F. Sherwood Rowland

The momentous subject of chlorofluorocarbons (CFCs) and their effect on The Biosphere's stratospheric ozone shield is treated rather generally but in sufficient depth where necessary in three main sections dealing with (i) scientific background and current status of ongoing investigation, (ii) the major technological uses of CFCs and available or foreseeable alternatives to them, and (iii) the policy status and regulatory activity involving present or proposed future restrictions in CFC emissions.It being unlikely that life, at least as we know it, would have developed on Earth without an ozone layer in the stratosphere to ‘filter off’ harmful ultraviolet rays from solar radiation, the prospect of continuing manufacture in developing countries of its destroyers is highly alarming, especially as these destructive CFCs may take more than a decade from emission to reach the levels around 40 km altitude at which they do the most harm.


2021 ◽  
Author(s):  
Ingo Wohltmann ◽  
Peter von der Gathen ◽  
Ralph Lehmann ◽  
Marion Maturilli ◽  
Holger Deckelmann ◽  
...  

<p>In the Antarctic ozone hole, ozone mixing ratios have been decreasing to extremely low values of 0.01–0.1 ppm in nearly all spring seasons since the late 1980s, corresponding to 95–99% local chemical loss. In contrast, Arctic ozone loss has been much more limited and mixing ratios have never before fallen below 0.5 ppm. In Arctic spring 2020, however, ozonesonde measurements in the most depleted parts of the polar vortex show a highly depleted layer, with ozone loss averaged over sondes peaking at 93% at 18 km. Typical minimum mixing ratios of 0.2 ppm were observed, with individual profiles showing values as low as 0.13 ppm (96% loss). The reason for the unprecedented chemical loss was an unusually strong, long-lasting, and cold polar vortex, showing that for individual winters the effect of the slow decline of ozone-depleting substances on ozone depletion may be counteracted by low temperatures.</p>


Sign in / Sign up

Export Citation Format

Share Document