Identification of a SAR8.2 gene in the susceptible host response of Nicotiana benthamiana to Colletotrichum orbiculare

2005 ◽  
Vol 32 (3) ◽  
pp. 259 ◽  
Author(s):  
Xue Chan Shan ◽  
Paul H. Goodwin

A SAR8.2 gene, NbSAR8.2m, was obtained from a PCR-selected cDNA subtraction library constructed from mRNA of Nicotiana benthamiana Domin. infected with Colletotrichum orbiculare (Berk & Mont.) von Arx. It is the first SAR8.2 gene described from N. benthamiana and shows relatively high similarity in both the coding and 3′-UTR to NtSAR8.2m of Nicotiana tabacum L. Expression of NbSAR8.2m occurred in healthy plants but was induced 8-fold following infection by C. orbiculare. Virus-induced gene silencing of NbSAR8.2m reduced its expression and resulted in the development of disease symptoms 24 h earlier than in control plants, indicating that NbSAR8.2m affects the length of the biotrophic phase of infection. Both NtSAR8.2m and NbSAR8.2m are unique among the SAR8.2 genes in that they encode for four cysteines near the C-terminus. The conserved cysteines of SAR8.2 genes may indicate roles in stress responses, defence reactions, metal ion homeostasis or other processes.

Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1282
Author(s):  
Colbie J. Reed ◽  
Geoffrey Hutinet ◽  
Valérie de Crécy-Lagard

Members of the DUF34 (domain of unknown function 34) family, also known as the NIF3 protein superfamily, are ubiquitous across superkingdoms. Proteins of this family have been widely annotated as “GTP cyclohydrolase I type 2” through electronic propagation based on one study. Here, the annotation status of this protein family was examined through a comprehensive literature review and integrative bioinformatic analyses that revealed varied pleiotropic associations and phenotypes. This analysis combined with functional complementation studies strongly challenges the current annotation and suggests that DUF34 family members may serve as metal ion insertases, chaperones, or metallocofactor maturases. This general molecular function could explain how DUF34 subgroups participate in highly diversified pathways such as cell differentiation, metal ion homeostasis, pathogen virulence, redox, and universal stress responses.


Author(s):  
Colbie Reed ◽  
Geoffrey Hutinet ◽  
Valérie de Crécy-Lagard

Members of the DUF34 (domain of unknown function 34) family, also known as the NIF3 protein superfamily, are ubiquitous across superkingdoms. Proteins of this family have been widely annotated as “GTP cyclohydrolase I type 2” through electronic propagation based on one study. Here, the annotation status of this protein family was examined through comprehensive literature review and integrative bioinformatic analyses that revealed varied pleiotropic associations and phenotypes. This analysis combined with functional complementation studies strongly challenges the current annotation and suggests that DUF34 family members may serve as metal ion insertases, chaperones, or metallocofactor maturases. This general molecular function could explain how DUF34 subgroups participate in highly diversified pathways such as cell differentiation, metal ion homeostasis, pathogen virulence, redox and universal stress responses.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
A. Sukumaran ◽  
S. Pladwig ◽  
J. Geddes-McAlister

Abstract Background Microbial organisms encounter a variety of environmental conditions, including changes to metal ion availability. Metal ions play an important role in many biological processes for growth and survival. As such, microbes alter their cellular protein levels and secretion patterns in adaptation to a changing environment. This study focuses on Klebsiella pneumoniae, an opportunistic bacterium responsible for nosocomial infections. By using K. pneumoniae, we aim to determine how a nutrient-limited environment (e.g., zinc depletion) modulates the cellular proteome and secretome of the bacterium. By testing virulence in vitro, we provide novel insight into bacterial responses to limited environments in the presence of the host. Results Analysis of intra- and extracellular changes identified 2380 proteins from the total cellular proteome (cell pellet) and 246 secreted proteins (supernatant). Specifically, HutC, a repressor of the histidine utilization operon, showed significantly increased abundance under zinc-replete conditions, which coincided with an expected reduction in expression of genes within the hut operon from our validating qRT-PCR analysis. Additionally, we characterized a putative cation transport regulator, ChaB that showed significantly higher abundance under zinc-replete vs. -limited conditions, suggesting a role in metal ion homeostasis. Phenotypic analysis of a chaB deletion strain demonstrated a reduction in capsule production, zinc-dependent growth and ion utilization, and reduced virulence when compared to the wild-type strain. Conclusions This is first study to comprehensively profile the impact of zinc availability on the proteome and secretome of K. pneumoniae and uncover a novel connection between zinc transport and capsule production in the bacterial system.


2003 ◽  
Vol 18 (3) ◽  
pp. 162-169 ◽  
Author(s):  
S.E. Theocharis ◽  
A.P. Margeli ◽  
A. Koutselinis

The metallothionein (MT) family is a class of low molecular weight, intracellular and cysteine-rich proteins presenting high affinity for metal ions. Although the members of this family were discovered nearly 40 years ago, their functional significance remains obscure. Four major MT isoforms, MT-1, MT-2, MT-3 and MT-4, have been identified in mammals. MTs are involved in many pathophysiological processes such as metal ion homeostasis and detoxification, protection against oxidative damage, cell proliferation and apoptosis, chemoresistance and radiotherapy resistance. MT isoforms have been shown to be involved in several aspects of the carcinogenic process, cancer development and progression. MT expression has been implicated as a transient response to any form of stress or injury providing cytoprotective action. Although MT participates in the carcinogenic process, its use as a potential marker of tumor differentiation or cell proliferation, or as a predictor of poor prognosis remains unclear. In the present review the involvement of MT in defense mechanisms to toxicity and in carcinogenicity is discussed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rute Oliveira ◽  
Matthew J. Bush ◽  
Sílvia Pires ◽  
Govind Chandra ◽  
Delia Casas-Pastor ◽  
...  

AbstractExtracytoplasmic function (ECF) sigma factors are key transcriptional regulators that prokaryotes have evolved to respond to environmental challenges. Streptomyces tsukubaensis harbours 42 ECFs to reprogram stress-responsive gene expression. Among them, SigG1 features a minimal conserved ECF σ2–σ4 architecture and an additional C-terminal extension that encodes a SnoaL_2 domain, which is characteristic for ECF σ factors of group ECF56. Although proteins with such domain organisation are widely found among Actinobacteria, the functional role of ECFs with a fused SnoaL_2 domain remains unknown. Our results show that in addition to predicted self-regulatory intramolecular amino acid interactions between the SnoaL_2 domain and the ECF core, SigG1 activity is controlled by the cognate anti-sigma protein RsfG, encoded by a co-transcribed sigG1-neighbouring gene. Characterisation of ∆sigG1 and ∆rsfG strains combined with RNA-seq and ChIP-seq experiments, suggests the involvement of SigG1 in the morphological differentiation programme of S. tsukubaensis. SigG1 regulates the expression of alanine dehydrogenase, ald and the WhiB-like regulator, wblC required for differentiation, in addition to iron and copper trafficking systems. Overall, our work establishes a model in which the activity of a σ factor of group ECF56, regulates morphogenesis and metal-ions homeostasis during development to ensure the timely progression of multicellular differentiation.


2006 ◽  
Vol 1 ◽  
pp. 117727190600100 ◽  
Author(s):  
Allan Evald Nielsen ◽  
Adam Bohr ◽  
Milena Penkowa

Metallothionein (MT) is a highly conserved, low-molecular-weight, cysteine-rich protein that occurs in 4 isoforms (MT-I to MT-IV), of which MT-I+II are the major and best characterized proteins. This review will focus on mammalian MT-I+II and their functional impact upon cellular survival and death, as seen in two rather contrasting pathological conditions: Neurodegeneration and neoplasms. MT-I+II have analogous functions including: 1) Antioxidant scavenging of reactive oxygen species (ROS); 2) Cytoprotection against degeneration and apoptosis; 3) Stimulation of cell growth and repair including angiogenesis/revascularization, activation of stem/progenitor cells, and neuroregeneration. Thereby, MT-I+II mediate neuroprotection, CNS restoration and clinical recovery during neurodegenerative disorders. Due to the promotion of cell survival, increased MT-I+II levels have been associated with poor tumor prognosis, although the data are less clear and direct causative roles of MT-I+II in oncogenesis remain to be identified. The MT-I+II molecular mechanisms of actions are not fully elucidated. However, their role in metal ion homeostasis might be fundamental in controlling Zn-dependent transcription factors, protein synthesis, cellular energy levels/metabolism and cell redox state. Here, the neuroprotective and regenerative functions of MT-I+II are reviewed, and the presumed link to oncogenesis is critically perused.


2012 ◽  
Vol 25 (5) ◽  
pp. 625-636 ◽  
Author(s):  
Kae Yoshino ◽  
Hiroki Irieda ◽  
Fumie Sugimoto ◽  
Hirofumi Yoshioka ◽  
Tetsuro Okuno ◽  
...  

Colletotrichum orbiculare, the causal agent of cucumber anthracnose, infects Nicotiana benthamiana. Functional screening of C. orbiculare cDNAs in a virus vector-based plant expression system identified a novel secreted protein gene, NIS1, whose product induces cell death in N. benthamiana. Putative homologues of NIS1 are present in selected members of fungi belonging to class Sordariomycetes, Dothideomycetes, or Orbiliomycetes. Green fluorescent protein–based expression studies suggested that NIS1 is preferentially expressed in biotrophic invasive hyphae. NIS1 lacking signal peptide did not induce NIS1-triggered cell death (NCD), suggesting apoplastic recognition of NIS1. NCD was prevented by virus-induced gene silencing of SGT1 and HSP90, indicating the dependency of NCD on SGT1 and HSP90. Deletion of NIS1 had little effect on the virulence of C. orbiculare against N. benthamiana, suggesting possible suppression of NCD by C. orbiculare at the postinvasive stage. The CgDN3 gene of C. gloeosporioides was previously identified as a secreted protein gene involved in suppression of hypersensitive-like response in Stylosanthes guianensis. Notably, we found that NCD was suppressed by the expression of a CgDN3 homologue of C. orbiculare. Our findings indicate that C. orbiculare expresses NIS1 at the postinvasive stage and suggest that NCD could be repressed via other effectors, including the CgDN3 homologue.


Sign in / Sign up

Export Citation Format

Share Document