The utility of phenotypic plasticity of root hair length for phosphorus acquisition

2010 ◽  
Vol 37 (4) ◽  
pp. 313 ◽  
Author(s):  
Jinming Zhu ◽  
Chaochun Zhang ◽  
Jonathan P. Lynch

Root hairs are subcellular protrusions from the root epidermis that are important for the acquisition of immobile nutrients such as phosphorus (P). Genetic variation exists for both root hair length and the plasticity of root hair length in response to P availability, where plasticity manifests as increased root hair length in response to low P availability. Although it is known that long root hairs assist P acquisition, the utility of phenotypic plasticity for this trait is not known. To assess the utility of root hair plasticity for adaptation to low phosphorus availability, we evaluated six recombinant inbred lines of maize (Zea mays L.) with varying root hair lengths and root hair plasticity in a controlled environment and in the field. Genotypes with long root hairs under low P availability had significantly greater plant growth, P uptake, specific P absorption rates and lower metabolic cost-benefit ratios than short-haired genotypes. Root hair length had no direct effect on root respiration. In the controlled environment, plastic genotypes had greater biomass allocation to roots, greater reduction in specific root respiration and greater final biomass accumulation at low phosphorus availability than constitutively long-haired genotypes. In the field study, the growth of plastic and long-haired genotypes were comparable under low P, but both were superior to short-haired genotypes. We propose that root hair plasticity is a component of a broader suite of traits, including plasticity in root respiration, that permit greater root growth and phosphorus acquisition in low P soils.

2015 ◽  
Vol 167 (4) ◽  
pp. 1430-1439 ◽  
Author(s):  
Magalhaes Amade Miguel ◽  
Johannes Auke Postma ◽  
Jonathan Paul Lynch

1996 ◽  
Vol 6 ◽  
pp. 137-140
Author(s):  
D.A. Care

Two populations of white clover, selected for long (L) and short (S) root hairs from the cultivar Tamar, were used to determine the root hair response curve to a range of aluminium (Al) concentrations similar to those found under field conditions. Seeds from the L and S populations were germinated and grown in low ionic strength hydroponic culture. Al was added to give final concentrations of 0, 2.5, 5, 7.5 and 10 ìM Al in solution. After 4 weeks plants were harvested and subsampled for root hair analysis. Mean root hair length, root hair number and total root hair length were recorded. Mean root hair length decreased by about 30% at 2.5 ìM Al, and by 70% at 10 ìM Al, but the most Al sensitive parameter was root hair number. Root hair numbers decreased by 70% at only 2.5 ìM Al, and at 10 ìM Al, had decreased by 99%. This pruning effect on total root hair length and number has major implications for the root hair functions of nutrient acquisition, preserving the moisture film, anchorage and nodulation. These are discussed in relation to New Zealand pastoral systems. Keywords: aluminium tolerance, nodulation, root hairs, root pulling, Trifolium repens L., white clover


2020 ◽  
Vol 452 (1-2) ◽  
pp. 171-184 ◽  
Author(s):  
Natsumi Okano ◽  
Ryo Goto ◽  
Taku Kato ◽  
Daisuke Saisho ◽  
Kenji Kato ◽  
...  

2012 ◽  
Vol 110 (2) ◽  
pp. 319-328 ◽  
Author(s):  
L.K. Brown ◽  
T.S. George ◽  
J.A. Thompson ◽  
G. Wright ◽  
J. Lyon ◽  
...  

2013 ◽  
Vol 372 (1-2) ◽  
pp. 195-205 ◽  
Author(s):  
Lawrie K. Brown ◽  
Timothy S. George ◽  
Gracie E. Barrett ◽  
Stephen F. Hubbard ◽  
Philip J. White

2004 ◽  
Vol 31 (10) ◽  
pp. 949 ◽  
Author(s):  
Jinming Zhu ◽  
Jonathan P. Lynch

Low soil phosphorus availability is a primary constraint for plant growth in many terrestrial ecosystems. Lateral root initiation and elongation may play an important role in the uptake of immobile nutrients, such as phosphorus, by increasing soil exploration and phosphorus solubilisation. The overall objective of this study was to assess the value of lateral rooting for phosphorus acquisition through assessment of the ‘benefit’ of lateral rooting for phosphorus uptake and the ‘cost’ of lateral roots in terms of root respiration and phosphorus investment at low and high phosphorus availability. Five recombinant inbred lines (RILs) of maize derived from a cross between B73 and Mo17 with contrasting lateral rooting were grown in sand culture in a controlled environment. Genotypes with enhanced or sustained lateral rooting at low phosphorus availability had greater phosphorus acquisition, biomass accumulation, and relative growth rate (RGR) than genotypes with reduced lateral rooting at low phosphorus availability. The association of lateral root development and plant biomass accumulation under phosphorus stress was not caused by allometry. Genotypes varied in the phosphorus investment required for lateral root elongation, owing to genetic differences in specific root length (SRL, which was correlated with root diameter) and phosphorus concentration of lateral roots. Lateral root extension required less biomass and phosphorus investment than the extension of other root types. Relative growth rate was negatively correlated with specific root respiration, supporting the hypothesis that root carbon costs are an important aspect of adaptation to low phosphorus availability. Two distinct cost–benefit analyses, one with phosphorus acquisition rate as a benefit and root respiration as a cost, the other with plant phosphorus accumulation as a benefit and phosphorus allocation to lateral roots as a cost, both showed that lateral rooting was advantageous under conditions of low phosphorus availability. Our data suggest that enhanced lateral rooting under phosphorus stress may be harnessed as a useful trait for the selection and breeding of more phosphorus-efficient maize genotypes.


2021 ◽  
Vol 49 (4) ◽  
pp. 12504
Author(s):  
Yongjie XU ◽  
Chunyong XU ◽  
Dejian ZHANG ◽  
Xianzhen DENG

Walnut, an important non-wood product forest tree, has free root hairs in orchards. Root hairs are specialized cells originating from the root epidermis that are regulated by plant hormones, such as auxins. This study was conducted to evaluate the effect and mechanism of phosphorus stress on root hair growth of walnut (Juglans regia L.) seedings by auxin (IAA) biosynthesis and transport. Both low phosphorus (LP) and no phosphorus stresses (NP) heavily decreased plant height, leaf number, total root length, root surface, shoot and root biomass, and root nutrient contents. The LP treatment significantly increased root hair growth, accompanied with up-regulation of the positive regulation root hair growth gene JrCPC and down-regulation of the negative regulation root hair growth gene JrTTG1, while the NP treatment had opposite effects. The root IAA level, IAAO activities, IAA transport genes (JrAUX1, JrLAX1, and JrPIN1), and the biosynthesis genes (JrTAA1 and JrTAR1) were increased by the LP treatment, while the NP treatment decreased all of them. Interestingly, the auxin biosynthesis gene CsYUCCA1 was not affected, which suggested that P mainly affects root hair growth of walnut by regulating auxin transport, and then affects root nutrient absorption and plant growth.


2020 ◽  
Vol 8 (6) ◽  
pp. 1049-1056
Author(s):  
Feng Huang ◽  
Zhaoyan Chen ◽  
Dejie Du ◽  
Panfeng Guan ◽  
Lingling Chai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document