Dynamic quantitative trait loci for salt stress components on chromosome 1 of rice

2010 ◽  
Vol 37 (7) ◽  
pp. 634 ◽  
Author(s):  
Tanveer Ul Haq ◽  
John Gorham ◽  
Javaid Akhtar ◽  
Nasim Akhtar ◽  
Katherine A. Steele

Rice varieties Co39 and Moroberekan differ for leaf Na+ concentrations when grown at moderate salinity (100–150 mol m–3 NaCl; 10 : 1 or 20 : 1 Na+ to Ca2+ ratio). Recombinant inbred lines (RILs) from a cross between them were used to map quantitative trait loci (QTL) under salt stress over several weeks. Two experiments (conducted with 170 and 96 RILs, and a linkage map of 126 RFLP markers) identified a major effect on QTL for leaf Na+ concentration and K+ : Na+ ratio on chromosome 1 in a region corresponding to 11.07–14.6 Mbp. No leaf Cl– QTL were detected. In a third experiment, leaves and sheaths were harvested after 7 and 21 days at 100 mol m–3 NaCl. The linkage map of chromosome 1 was improved by the addition of 28 microsatellite markers, which resolved distinct QTL for Na+ and K+ concentrations, and K+ : Na+ ratio. After 7 days’ stress, the most significant QTL were in the region of 11.56–12.66 Mbp. The highest Na+ concentrations were recorded in the sheaths. Na+ concentration QTL were detected for leaves, but not for sheaths. After 21 days’ stress, the region containing the most significant QTL extended to 11.07 Mbp in leaves and in sheaths. A QTL for the ratio of leaf Na+ to sheath Na+ concentrations was found at 11.39–12.39 Mbp. These findings suggest that multiple genes in this region are involved in the response to salinity, and their impact is dynamic according to stress duration, and leaf age and type.

Genes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Niranjan Baisakh ◽  
Jonalyn Yabes ◽  
Andres Gutierrez ◽  
Venkata Mangu ◽  
Peiyong Ma ◽  
...  

Improving drought resistance in crops is imperative under the prevailing erratic rainfall patterns. Drought affects the growth and yield of most modern rice varieties. Recent breeding efforts aim to incorporate drought resistance traits in rice varieties that can be suitable under alternative irrigation schemes, such as in a (semi)aerobic system, as row (furrow-irrigated) rice. The identification of quantitative trait loci (QTLs) controlling grain yield, the most important trait with high selection efficiency, can lead to the identification of markers to facilitate marker-assisted breeding of drought-resistant rice. Here, we report grain yield QTLs under greenhouse drought using an F2:3 population derived from Cocodrie (drought sensitive) × Nagina 22 (N22) (drought tolerant). Eight QTLs were identified for yield traits under drought. Grain yield QTL under drought on chromosome 1 (phenotypic variance explained (PVE) = 11.15%) co-localized with the only QTL for panicle number (PVE = 37.7%). The drought-tolerant parent N22 contributed the favorable alleles for all QTLs except qGN3.2 and qGN5.1 for grain number per panicle. Stress-responsive transcription factors, such as ethylene response factor, WD40 domain protein, zinc finger protein, and genes involved in lipid/sugar metabolism were linked to the QTLs, suggesting their possible role in drought tolerance mechanism of N22 in the background of Cocodrie, contributing to higher yield under drought.


2020 ◽  
Author(s):  
Quanya Tan ◽  
Tuo Zou ◽  
Mingmin Zheng ◽  
Yuerong Ni ◽  
Xin Luan ◽  
...  

Abstract Background: Stigma exsertion rate (SER) is a key determinant for outcrossing ability of male sterility lines (MSLs) in hybrid rice seed production. Outcrossing ability in cultivated rice varieties has diminished during the process of domestication, while wild Oryza species keep strong outcrossing ability. Here, we detected the quantitative trait loci (QTLs) controlling SER using a set of single-segment substitution lines (SSSLs) derived from O. glumaepatula, a wild Oryza species.Results: Seven QTLs for SER, qSER-1a, qSER-1b, qSER-3a, qSER-3b, qSER-5, qSER-9 and qSER-10, were located on 5 chromosomes. qSER-1a and qSER-1b were located on chromosome 1. qSER-3a and qSER-3b were mapped on chromosome 3, and qSER-3b was further located at an interval of 931.0kb by secondary substitution mapping. qSER-5, qSER-9 and qSER-10 were identified on chromosomes 5, 9 and 10, respectively, and qSER-9 was delimited to a region of 608.2kb by secondary substitution mapping. The additive effects of the 7 QTLs ranged from 10.6% to 14.8%, and the additive contribution variances explained by each of the QTLs were from 36.3% to 50.6%, which were higher than those of most loci for SER reported previously.Conclusions: qSER-1a and qSER-1b were novel loci for SER on chromosome 1. All of the 7 QTLs had major effects on SER. The major QTLs of SER will help to develop MSLs with strong outcrossing ability.


Genome ◽  
2002 ◽  
Vol 45 (3) ◽  
pp. 467-472 ◽  
Author(s):  
R Sharma ◽  
R AK Aggarwal ◽  
R Kumar ◽  
T Mohapatra ◽  
R P Sharma

RAPD markers were employed for construction of a linkage map and localization of QTLs for oleic acid level using a set of 94 recombinant inbred lines (RILs) of mustard (Brassica juncea L.) as a mapping population. Only 30% of the 235 random primers used were useful in terms of polymorphism detected and the reproducibility of those patterns. Normal Mendelian segregation was observed for the majority of the 130 markers obtained with 71 informative primers; only 13.1% deviated (P < 0.01) from the expected 1:1 ratio. One-hundred and fourteen markers were assigned to 21 linkage groups (LGs) covering a total length of 790.4 cM with an average distance of 6.93 cM between markers. Two quantitative trait loci (QTL) for oleic acid level were mapped to 14- and 10.6-cM marker intervals on two different LGs. Both loci together explained 32.2% of phenotypic variance. One major QTL explained 28.5% of the trait variance observed in this species.Key words: Brassica juncea, linkage map, oleic acid, quantitative trait loci, RAPD, recombinant inbred line.


Genetics ◽  
1999 ◽  
Vol 152 (2) ◽  
pp. 699-711 ◽  
Author(s):  
D E Moody ◽  
D Pomp ◽  
M K Nielsen ◽  
L D Van Vleck

Abstract Energy balance is a complex trait with relevance to the study of human obesity and maintenance energy requirements of livestock. The objective of this study was to identify, using unique mouse models, quantitative trait loci (QTL) influencing traits that contribute to variation in energy balance. Two F2 resource populations were created from lines of mice differing in heat loss measured by direct calorimetry as an indicator of energy expenditure. The HB F2 resource population originated from a cross between a noninbred line selected for high heat loss and an inbred line with low heat loss. Evidence for significant QTL influencing heat loss was found on chromosomes 1, 2, 3, and 7. Significant QTL influencing body weight and percentage gonadal fat, brown fat, liver, and heart were also identified. The LH F2 resource population originated from noninbred lines of mice that had undergone divergent selection for heat loss. Chromosomes 1 and 3 were evaluated. The QTL for heat loss identified on chromosome 1 in the HB population was confirmed in the LH population, although the effect was smaller. The presence of a QTL influencing 6-wk weight was also confirmed. Suggestive evidence for additional QTL influencing heat loss, percentage subcutaneous fat, and percentage heart was found for chromosome 1.


2017 ◽  
Vol 155 (8) ◽  
pp. 1263-1271 ◽  
Author(s):  
W. L. TENG ◽  
W. J. FENG ◽  
J. Y. ZHANG ◽  
N. XIA ◽  
J. GUO ◽  
...  

SUMMARYLutein benefits human health significantly, including that of the eyes, skin and heart. Therefore, increasing lutein content in soybean seeds is an important objective for breeding programmes. However, no information about soybean lutein-related quantitative trait loci (QTL) has been reported, as of 2016. The aim of the present study was to identify QTLs underlying the lutein content in soybean seeds. A population including 129 recombinant inbred lines was developed from the cross between ‘Dongnong46’ (lutein 13·10 µg/g) and ‘L-100’ (lutein 23·96 µg/g), which significantly differed in seed lutein contents. This population was grown in ten environments including Harbin in 2012, 2013, 2014 and 2015; Hulan in 2013, 2014 and 2015; and Acheng in 2013, 2014 and 2015. A total of 213 simple sequence repeat markers were used to construct the genetic linkage map, which covered approximately 3623·39 cM, with an average distance of 17·01 cM between markers. In the present study, eight QTLs associated with lutein content were found initially, which could explain 1·01–19·66% of the observed phenotypic variation in ten different tested environments. The phenotypic contribution of qLU-1 (located near BARC-Satt588 on chromosome 9 (Chr 9; linkage group (LG) K)) was >10% across seven tested environments, while qLU-2 (located near Satt192 of Chr 12 (LG H)) and qLU-3 (located near Satt353 of Chr12 (LGH)) could explain 5–10% of the observed phenotypic variation in more than seven environments, respectively. qLU-5, qLU-6, qLU-7 and qLU-8 could be detected in more than four environments. These eight QTLs were novel, and have considerable potential value for marker-assistant selection of higher lutein content in soybean lines.


Sign in / Sign up

Export Citation Format

Share Document